next up previous contents
Next: Critical Damping. Up: The Damped Oscillator. Previous: Underdamped Oscillations   Contents

Over-damped Oscillations.

This refers to the situation where
\begin{displaymath}
\beta > \omega_0
\end{displaymath} (2.14)

The two roots are
\begin{displaymath}
\alpha_1=-\beta + \sqrt{\beta^2 - \omega_0^2} = - \gamma_1
\end{displaymath} (2.15)

and


\begin{displaymath}
\alpha_2=-\beta - \sqrt{\beta^2 - \omega_0^2} = - \gamma_2
\end{displaymath} (2.16)

where both and $\gamma_2 > \gamma_1$. The two roots give rise to exponentially decaying solutions, one which decays faster than the other
\begin{displaymath}
x(t)=A_1 e^{- \gamma_1 t} + A_2 e^{- \gamma_2 t} \,.
\end{displaymath} (2.17)

The constants $A_1$ and $A_2$ are determined by the initial conditions. For initial position $x_0$ and velocity $v_0$ we have
\begin{displaymath}
x(t)=\frac{v_0 + \gamma_2 x_0}{\gamma_2-\gamma_1} e^{-\gamm...
...frac{v_0 + \gamma_1 x_0}{\gamma_2-\gamma_1} e^{-\gamma_2 t}
\end{displaymath} (2.18)

Figure 2.2:
\begin{figure}
\epsfig{file=chapt2//odamp.eps,height=2.0in}
\end{figure}

The overdamped oscillator does not oscillate. Figure 2.2 shows a typical situation.

In the situation where $\beta \gg \omega_0$

\begin{displaymath}
\sqrt{\beta^2 - \omega_0^2} = \beta \sqrt{1 -
\frac{\omeg...
... \left[ 1 -
\frac{1}{2}\frac{\omega_0^2}{\beta^2} \right]
\end{displaymath} (2.19)

and we have and $\gamma_2=2 \beta$.


next up previous contents
Next: Critical Damping. Up: The Damped Oscillator. Previous: Underdamped Oscillations   Contents
Physics 1st Year 2009-01-06