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Black Holes in Modified Gravity and Cosmology

∗ Modified (String, Braneworld, JBD) black

hole solutions

∗ Modified cosmological evolution (e.g., in in-

flation, braneworld scenario)

∗ Existence of Primordial black holes: forma-

tion and evolution; observational constraints

from end products of Hawking evaporation

∗ Structure formation through black holes; co-

alescence of binaries and gravitational waves

∗ Astrophysical (massive) black holes: modi-

fied geometry due to modified gravity

∗ Probe through Gravitational lensing (weak-

and strong-field) observables



Braneworld Black Holes

Modified gravity on the brane: Corrections to

the Newtonian potential at large distances:

V (r) =
2M

M2
4r

(1 +
2l2

3r2
)

Curvature radius of 5-th dimension, l ≤ 0.2mm.

Effect of Kaluza-Klein modes on metric exte-

rior to static and spherically symmetric matter

distribution on brane in the weak field limit:

dS2
4 = −(1− 2M

M2
4r

+
4Ml2

3M2
4r3

)dt2+(1+
2M

M2
4r

+
2Ml2

3M2
4r3

)(dr2+r

Project Weyl term Eµν on brane; Map 4-d

Einstein-Maxwell to vacuum braneworld:

Rµν = −Eµν;Rµ
µ = 0;∇µEµν = 0;κ2Tµν ↔ −Eµν

Exact black hole solution to effective brane

field eqns.:

dS2
4 = −

(

1 − 2M

M2
4r

+
Q

r2

)

dt2+

(

1 − 2M

M2
4r

+
Q

r2

)−1

dr2+r2

Reissner-Nordstrom type metric with tidal

charge Q = −Ml
M2

4



Black hole solutions

Spherically symmetric, static solutions to field

equations with 5-d cosmological constant:

ds24 = −(1− 2M

M2
4r

)dt2+
1 − 3M

2M2
4r

(1 − 2M
M2

4r
)

(

1 − M(4β−1)

2M2
4r

)+r2dΩ2

in terms of PPN parameter β.

Rotating braneworld black holes:

(in Boyer-Lindquist coordinates)

ds24 = −(1−2Mr − β

Σ
)dt2−2a(2Mr − β)

Σ
sin2θdtdφ

+
Σ

∆
dr2+Σdθ2+(r2+a2+

2Mr − β

Σ
a2sin2θ)sin2θdφ2

tidal charge β. Kerr black hole when β → 0.

∆ = r2a + a2 − 2Mr + β Σ = r2 + a2cos2θ

Other solutions, e.g., black strings, wormholes,

etc.

Arbitrariness of projected Weyl term Eµν and

its geometric origin responsible for a variety of

black hole solutions.



Primordial black holes

Form through various processes in the early

universe with typical size of the hubble volume

At short distances braneworld gravity is truly

5-dimensional: 1/r2 corrections may dominate

over 1/r or weak field 1/r3. Natural to consider

5-d Schwarzschild soln.:

ds25 = −
(

1 − r2BH

r2

)

dt2+

(

1 − r2BH

r2

)−1

dr2+r2
(

dΩ2
3

)

horizon size r0 ≪ l.

Induced 4-d metric near event horizon:

dS2
4 = −

(

1 − r2BH

r2

)

dt2+

(

1 − r2BH

r2

)−1

dr2+r2
(

dΩ2
)

reflects 5-d character of strong gravitational

field near horizon.



Dilaton black holes in accelerating universe

Gravity coupled to Dilaton and Maxwell field

(Higher dimensional String action) → Compat-

ification:

S =

∫

d4x
√
−g

[

R − 2∂µφ∂µφ − V (φ) − e−2φFµνFµν
]

Dilaton charge and potential:

D =
Q2e2φ0

2M

V (φ) =
4

3
λ +

λ

3

[

e2(φ−φ0) + e−2(φ−φ0)
]

Accelerating de Sitter universe with cosmo-

logical constant λ

Dilaton-de Sitter black hole metric:

dS2 = −
(

1 − 2M

r
− r(r − 2D)H2

)

dt2

+

(

1 − 2M

r
− r(r − 2D)H2

)−1

dr2r(r−2D)
(

dΩ2
)

with H2 = λ
3. For H = 0 the metric goes to

GMGHS black hole. For both D = 0 and H =

0 it reduces to Schwarzschild metric. When

φ = φ0 = 0, RN metric is recovered.



Primordial black holes in JBD models

Generalized JBD (Scalar-tensor) models:

S =
1

16πG

∫

d4x
√
−g[φR−ω(φ)

φ
(∂µφ)2]+Smatter

Solutions in radiation dominated era:

a(t) = ai(
t

ti
)

3
ωi+6; φ(t) = φi(

t

ti
)
− 3

ωi+6; ω(t) = ωi(
t

ti
)
2ωi+3
ωi+6

Black holes with variable G

r =
2M

φ
; T =

φ

8πM

Evolving size and temperature.

Gravitational memory ?



Braneworld cosmology

H2 =
8π

3M2
4

(

ρ +
ρ2

2λ
+ ρKK

)

+
Λ4

3
− k

a2

Cosmological Solutions for the Scale Factor

and Energy Density:

ρ =
3M2

4

32πt(t + tc)

a = a0

[ t(t + tc)

t0(t0 + tc)

]1/4

tc ≡ l/2 is the transition time.

For t < tc (or ρ >> λ): Non-conventional high

energy regime:

a = a0(
t
t0

)1/4; ρ =
3M2

4
32πtct

Radiation temperature: ρ = π2gT4

30
Modified temperature-time relation: Tc(lmax) ≈
103GeV

For t >> tc (or ρ ≤ λ): Standard low energy

regime:

a = a0(
t

(t0tc)1/2)
1/2; ρ =

3M2
4

32πt2



Accretion and evaporation

by primordial black holes

BH radius and temperature:

rBH =
( 8

3π

)1/2( l

l4

)1/2( M

M4

)1/2
l4;TBH =

1

2πrBH

Rate of Hawking evaporation:

dM

dt
≈ −gbraneσ̄4Aeff,4T4

BH

Accretion of surrounding radiation effective

in braneworld high energy phase. Radiation

density scales as:

ρR =
3M2

4

32πtct

. Rate of accretion:
(dM

dt

)

acr
= fρRAeff,4

Accretion efficiency: 0 < f < 1.



Cosmology with Black Holes

A population of primordial black holes with

an initial number density nBH(t0) and total

energy fraction β exchange energy with the

surrounding radiation by accretion and evapo-

ration. ρT (t0) = ρR(t0) + ρBH(t0)

ρBH(t0) = βρT (t0) = M0nBH(t0)

Evolution of energy components:

Ṁ = −AM2
4

Mtc
+

BM

t
d

dt

(

ρR(t)a4(t)
)

= −Ṁ(t)nBH(t)a(t)

BH’s grow monotonically for a while

M(t)

M0
≃
( t

t0

)B

During this period nBH(t) ∝ a(t)−3. Since

a(t) ∝ t1/4, thus (nBH(t)/nBH(t0)) = (t0/t)3/4.

The condition for the universe to remain radi-

ation dominated (i.e., ρBH(t) < ρR(t)) at any

instant t is

β <
(t0/t)B+1/4

1 + (t0/t)B+1/4



Examples of BH lifetime enhancement

Numerical integration of the coupled system of

the BH equation, radiation density equation,

and the hubble expansion equation is required

to determine the evolution exactly. Neverthe-

less:

∗ For (l/l4) ≃ 1030, BHs with M0 = 108M4 ≃
103g survive up to the present era if tt ∼ tc.

∗ For (l/l4) ∼ 1020, black holes formed with

M0 = 1015M4 ≃ 1010g, will have Mmax ≃
1015g, and will evaporate now completing

their life cycle as 5D black holes.

∗ For (l/l4) ∼ 1020, BHs with M0 ≤ M4 survive

up to the era of nucleosynthesis and beyond

if tt ≥ 105tc.

ASM, Phys. Rev. Lett. 90, 031303 (2003)



Jordan-Brans-Dicke cosmology

S =
1

16πG

∫

d4x
√
−g[φR−ω(φ)

φ
(∂µφ)2]+Smatter

Friedman Equation:

ȧ2

a2
+

ȧφ̇

aφ
− ωφ̇2

6φ2
=

ρ

3φ

JBD field equation:

φ̈ + 3
ȧφ̇

a
=

ρ − 3p

2ω + 3
− ω̇φ̇

2ω + 3

Energy conservation:

ρ̇ + 3
ȧ

a
(ρ + p) = 0



Evolution of PBHs in JBD cosmology

Accretion and evaporation:

Ṁacc = 4πfr2ρ Ṁevap = −4πgr2σT4

Solutions in radiation dominated era:

a(t) = ai(
t

ti
)

3
ωi+6; φ(t) = φi(

t

ti
)
− 3

ωi+6; ω(t) = ωi(
t

ti
)
2ωi+3
ωi+6

PBHs with M0 < Mc evaporate out in the R.D.

era.

Survival and growth of PBHs:

Mmax

M0
≃ 1

1 − BM0ln(teq/t0)

PBH lifetime:

tevap = t0
[

1 − M3
0

f(M0, t0)

]−3/5

PBHs with M0 > Mc survive as candidates of

dark matter.

ASM, L. P. Singh and D. Gangopadhyay, MN-

RAS (2008)



Observational constraints on mass distribution

Initial Mass fraction:

αM0
(t) =

ρBH(t)

ρT
; α0 =

β

1 − β

‘Final’ mass fraction:α(tevap)

Strategy: Consider Observational Constraints

(on end products of evaporation) on α(tevap)

at different cosmological epochs: α(t) < L4D(t)

or α(t) < L5D(t). Trace back to constrain ini-

tial mass spectrum.

L0
5D

L0
4D

=
L5D(tevap)
L4D(tevap)

( l
lmin

)
5−16B
16−8B ; lmin ∝ t

1/3
evap

Departure from standard constraints sensitive

to accretion efficiency: Liddle et. al, PRD 68

(2003). Constraints from:

∗ Diffuse photon background: Sendouda et al,

PRD 68 (2003).

∗ sub-GeV galactic antiprotons: Sato el al,

PRD 71 (2005).



Gravitational waves from coalescing binaries

Binaries of primordial BHs with parameters in

SULCO range emit gravitatonal waves in co-

alescing stage that may be detected in future

interferometers (Inoue and Tanaka, PRL 91

(2003)).

Mechanism for formation of braneworld PBH

binaries: interacting black holes in radiation.

ṁi =
Bmi

t
− Am2

4

mitc
− r2i ṁj

4d2

Effect of interaction: e.g. large BH in ac-

creting phase suppresses the growth of smaller

BH: Divergence of mass differences.

Formation of BH binaries by three body grav-

itational interactions:

m1 = δ12m2 m2 = δ23m3 δ12, δ23 < 1

Bound system of two black holes gets decou-

pled from the background expansion. Third

neighbour provides tidal force to prevent head-

long collision.

⋆ Example of a braneworld BH binary:

Formation time: tf ∼ 1012tc; Major axis: ∼
107cm. [ASM, A. Mehta and J.-M. Luck, Phys.

Lett. B607, 219 (2005)].



Gravitational lensing
S I

α

θ

δ

u

r0

D

D

D

O

s

ds

d

M

Lense equation:

tanδ = tanθ − Dds

Ds
[tanθ + tan(α − θ)]

Lensing by spherically symmetric metrics:

ds2 = −A(r)dt2 + B(r)dr2 + C(r)
(

dΩ2
)

Impact parameter u; Distance of closest ap-

proach: r0. u = [C0/A0]
1/2.

Deflection angle for strong gravitational lens-

ing:

α(r0) =

∞
∫

r0

2
√

Bdr
√

C

√

C
C0

A0
A − 1

− π



Weak field lensing by braneworld black hole

dS2
4 = −

(

1 − r2h
r2

)

dt2+

(

1 − r2h
r2

)−1

dr2+ r2dΩ2

Variational Principle → Bending angle of light:

α = 2

(

l

l4

)(

M

M4

)

l24r20

Comparison with Schwarzschild metric bend-

ing angle: α/αSch = 2lu0.Magnification:

µ =
△θ

△δ

θ

δ
= | θ4

θ4 − α4
0

|

Impact factor for perceptible magnification:

r20 ≃ 2ll4
M

M4

For solar mass BHs in the galactic halo,

r0 ∼ 1cm

Absence of microlensing events do NOT rule

out braneworld BHs.

ASM and N. Mukherjee,

Mod. Phys. Lett. A20, 2487 (2005).



Strong lensing in modified geometry

Lensing observables: n relativistic images: θ1, ...θ∞.

Separation between first image and others:

S = θ1 − θ∞

Ratio of fluxes:

R =
µ1

∞
∑

n=2
µn

Minimum impact parameter:

um = Ddθ∞

Galactic Centre Black Hole

M = 2.8 × 106M⊙; Dd = 8.5 kpc

Obser- Schwzsld Brane Metrics

vables metric Q = −0.1 β = 1 − 10−4

θ∞ 16.87 17.87 16.87

S 0.0211 0.0142 0.01923

rm 6.82 7.02 6.887

um/rs 2.6 2.75 2.6

a 1 0.9708 0.9999

b -0.4002 -0.612 -0.429

ASM and N. Mukherjee, IJMP (2005); Gen.

Rel. Grav. (2007).



Black Holes in extra dimensions—Summary

ASM, Phys. Rev. Lett. 90, 031303 (2003);

ASM, A. Mehta and J.-M. Luck, Phys. Lett.

B607, 219 (2005); ASM and N. Mukherjee,

Mod. Phys. Lett. A20, 2487 (2005); ASM

and N. Mukherjee, Int. J. Mod. Phys. D14,

1095 (2005); ASM and N. Mukherjee, Gen.

Rel. Grav. 39, 583 (2007) ASM, L. P. Singh

and D. Gangopadhyay, MNRAS (2008).

∗ Modified gravity in string, brane models.

Several Black Hole Solutions.

∗ Primordial BHs. modified geometry near

horizon. Modified evaporation. Effective ac-

cretion of radiation.

Long-lived primordial BHs. Cosmological con-

straints modified.

∗ Interacting BHs. Divergence of mass differ-

ences. Formation of BH-BH binaries. Coa-

lescence. Gravitational waves.

∗ Gravitational lensing. Reduced observabil-

ity in microlensing. Candidates of halo dark

matter ?

∗ Strong gravitational lensing. Modified ob-

servables for future probes.


