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The warm-up

Brane : FRW ⇐⇒ Bulk : Schwarzschild-AdS / Vaidya-AdS

Brane metric Bulk source Bulk metric Comments
1 Minkowski Λ5 < 0 warped, AdS5 –
2 Minkowski bulk field warped –
3 FRW black hole Schwarzschild- m = 0 ⇒ 1

(empty) AdS5

4 FRW radiative black Vaidya-AdS5 m(v) = m ⇒ 3
hole(bulk field) m(v) = 0 ⇒ 1

Put m = 0 and get back warped (AdS) geometry in the bulk

This is a generalisation of RS II scenario
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How to visualise ?

Schwarzschild-AdS bulk

dS2
5 = −f(r)dt2 + 1

f(r)dr
2 + r2dΣ2

3 with f(r) = k − Λ5

6 r
2 − m

r2

∗ For embedding : tangents uµ = (ṫ, ṙ), normals nµ = (ṙ, −
√
f+ṙ2

f )
∗ Induced metric on the brane

ds2 = −dτ2 + r2(τ)dΩ2
3

∗ Identify r(τ) with the scale factor a(τ) =⇒ FRW

Expanding 4D universe ≡ Moving brane in the bulk

⇑ ⇑
Brane-based observer Bulk-based observer

J.Garriga et.al., PRD(2000)
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Brane-based analysis: effective cosmology

The effective Einstein equation on the brane

Gµν = −Λgµν + κ2
4Tµν

︸ ︷︷ ︸
+κ4

5Sµν
︸ ︷︷ ︸

− Eµν
︸︷︷︸

+ Fµν
︸︷︷︸

⇓ ⇓ ⇓ ⇓
4D GR Quadratic Weyl Bulk

Tµν term matter
For convenience, express it in terms of an effective EM tensor as

Gµν = −Λgµν + κ2
4T

eff
µν

For a perfect fluid on the brane, components of T eff
µν

ρeff = ρ+ ρ2

2λb
+ ρ∗

peff = p+ ρ
2λb

(ρ+ 2p) + ρ∗

3

qeffµ = q∗µ
πeff
µν = π∗

µν

For a bulk compatible to FRW geometry on the brane, qeffµ = 0 = πeff
µν
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Schwarzschild-AdS bulk, FRW brane

Empty bulk (T bulk
AB = 0) ⇒ Fµν = 0

Bianchi identity on the brane ⇒ conservation equations

For brane matter/radiation :

ρ̇+ 3H(ρ+ p) = 0

For Weyl fluid :

ρ̇∗ + 4Hρ∗ = 0

=⇒ ρ∗ = C
a4

C ∼ (constant) mass of the bulk Schwarzschild-AdS black hole

R.Maartens, LRR(2004)
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Vaidya-AdS bulk, FRW brane

Radiative bulk (T bulk
AB = ψ qAqB) ⇒ Fµν = 2

3κ
2
5 ψhµν

Bianchi identity on the brane ⇒ (non)conservation equations

For brane matter/radiation :

ρ̇+ 3H(ρ+ p) = −2ψ

For Weyl fluid :

ρ̇∗ + 4Hρ∗ = 2ψ − 2κ2
5

3κ2
4

[

ψ̇ + 3Hψ
]

=⇒ ρ∗ = C(τ)
a4

C(τ) ∼ (variable) mass of the bulk Vaidya-AdS black hole
Put ψ = 0 and get back Schwarzschild-AdS bulk scenario

Vaidya-AdS bulk is so far the most general scenario
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Brane Friedmann equations

H2 =
κ2
4

3

[

ρ+ ρ2

2λb
+ C(τ)

a4

]

+ Λ
3 − k

a2

Ḣ = −κ2
4

2

[

(ρ+ p)
(

1 + ρ
λb

)

+ 4C(τ)
3a4

]

+ k
a2 − κ2

5

3 ψ

Look too complicated !

Rewrite in terms of the effective perfect fluid T eff
µν

H2 =
κ2
4

3 ρ
eff + Λ

3 − k
a2

Ḣ = −κ2
4

2 (ρeff + peff) + k
a2 − κ2

5

3 ψ

Now they look much familiar

As if there is an effective perfect fluid that governs
cosmological dynamics

D.Langlois et.al., PRL(2002)

0-7



Just for the sake of completeness...

Effective equation of state

weff = peff

ρeff
=

p+ ρ
2λb

(ρ+2p)+ ρ∗

3

ρ+ ρ2

2λb
+ρ∗

Effective sound speed

c2eff = ṗeff

ρ̇eff
=

[

c2s + ρ+p
ρ+λb

+ 4ρ∗

9(ρ+p)(1+ρ/λb)

] [

1 + 4ρ∗

3(ρ+p)(1+ρ/λb)

]
−1
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Role of the quadratic term

Early universe :

ρ2 ≫ λb ⇒ significant

• Faster Hubble expansion implies inflation at a much faster rate
than standard cosmology

R. Maartens et.al., PRD(2001)

• Inflation without 4D inflatonic field on the brane

Y. Himemoto et.al., PRD(2001)

Late time :

ρ2 ≪ λb > (100GeV )4 ⇒ negligible
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Role of the Weyl fluid

Evolution equation :

ρ̇∗ + 4Hρ∗ = 2ψ − 2κ2
5

3κ2
4

[

ψ̇ + 3Hψ
]

For empty bulk :

ψ = 0 ⇒ ρ∗ = C
a4 =⇒ dark radiation

Nucleosynthesis data ⇒< 3% of radiation energy density
Since radiation-like, its effect negligible at late times

J.D.Barrow et.al., PLB(2002)

For radiative bulk :

ψ 6= 0 ⇒ ρ∗ = C(τ)
a4 =⇒ no longer radiation-like !

⇓
may be significant at late times
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“Newtonian” perturbations on the brane

SP, PRD 74, 024005 (2006)

Hydrodynamic equations in terms of effective perfect fluid

∂ρeff

∂t +
−→∇ .(ρeff −→v eff) = 0

∂−→v eff

∂t + (−→v eff .
−→∇)−→v eff = −

−→∇peff

ρeff
−−→∇Φeff

∇2Φeff = 4πGρeff

Consider perturbations

ρeff(−→x , τ) = ρ̄eff(τ)(1 + δeff(−→x , τ))

Φeff(−→x , τ) = Φeff
0 + φeff

0-11



∗ Use comoving coordinates veff = ȧ r + ueff

∗ Express in terms of Fourier transform

∗ Apply peff = p(ρeff)

Perturbation equations for Fourier modes δeffk (τ)

d2δeffk

dτ2 + 2 ȧa
dδeffk

dτ −
[

4πGρ̄eff −
(
c2effk/a

)2
]

δeffk = 0

ρeff = ρ+
ρ2

2λb
︸︷︷︸

+ρ∗

⇓
0

⇒ ρeff = ρ+ ρ∗

So, a two fluid system : baryonic matter + Weyl fluid
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So, break the perturbation equation into :

• Baryonic matter fluctuation

d2δb

dτ2 + 2 ȧa
dδb

dτ = 4πGρ̄bδb + 4πGρ̄∗δ∗

• Weyl fluid fluctuation

d2δ∗

dτ2 + 2 ȧa
dδ∗

dτ = 4πGρ̄∗δ∗ + 4πGρ̄bδb

For radiative bulk, evolution eqn for the Weyl fluid is, in general,
governed by

ρ̇∗ + 4Hρ∗ = αHρ∗

=⇒ ρ∗ = C0a
−(4−α)

For 1 < α < 4, Weyl fluid can dominate over matter !
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∗ Apply Ωb ≪ Ω∗

∗ Scale factor at late time a(τ) =
(

3
2H0τ

)2/3(weff+1)

And obtain a consistent solution for the fluctuation equations :

δ∗(z) = δ∗(0)(1 + z)−1 δb(z) = δ∗(z)
(

1 − 1+z
1+zN

)

So.....

• z ≪ zN =⇒ δb ≃ δ∗

• z → zN =⇒ δb → 0 but δ∗ still finite

This is precisely what is required to explain structure formation

Weyl fluid mimics dark matter
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Relativistic perturbations: a brief sketch

R.Koley & SP, in progress

• Acts like a two fluid system

• Material fluid : ρ(b) & Geometric fluid : ρ∗

• Interacting and Exchanging energy between them

Comoving fractional gradients of density and expansion as in GR

∆
(i)
µ = a

ρ(i)Dµρ
(i) and Zµ = aDµΘ

(Non)conservation equations can be written composedly as

ρ̇(i) + Θ(ρ(i) + p(i)) = I(i)
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For Einstein-de Sitter brane universe (Ω∗ = 1,ΩΛ = 0), the linearised
evolution equations :

∆̇
(i)
µ =

(

3Hw(i) − I(i)

ρ(i)

)

∆
(i)
µ −(1+w(i))Zµ− c2s I(i)

ρ(i)(1+w)
∆µ−

3aHI(i)
µ

ρ(i) + a
ρ(i)DµI

(i)

Żµ + 2HZµ = −κ2

2 ρ∆ − c2s
1+wDµD

ν∆ν +
κ2

5
ψ

1+w c
2
s∆µ − aκ2

5
Dµψ

Density perturbations are governed by the fluctuation of the covariant
projections

∆(i) = a Dµ∆
(i)
µ and Z = a DµZµ

Covariant density perturbation equations on the brane :

∆̇(i) =
(

3Hw(i) − I(i)

ρ(i)

)

∆(i)−(1+w(i))Z− c2s I(i)

ρ(i)(1+w)
∆− 3a2HDµI(i)

µ

ρ(i) + a2

ρ(i)D
2I(i)

Ż + 2HZ = −κ2

2 ρ∆ − ac2s
1+wD

2∆ +
κ2

5
ψ

1+w c
2
s∆ − a2κ2

5D
2ψ
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If ψ is function of time only and the energy exchange is in equilibrium

⇒ α = 5
2 ; ρ∗ ∝ 1

a3/2

Hence .....

Scalar perturbation equation for matter on brane

∆̈(b)+2H∆̇(b) = κ2

2 ρ∆− c2sκ
2

5
ψ

1+w ∆+ 4Hψ
ρ(b)

(

∆(b) +
c2s∆
1+w

)

+
(

2ψ
ρ(b)

(

∆(b) +
c2s∆
1+w

))
·

Scalar perturbation equation for Weyl fluid on brane

∆̈∗ + 2H∆̇∗ = 4
3
κ2

2 ρ∆ − c2s∆
1+w

(

7Hψ
ρ∗ +

4κ2

5
ψ

3 + 2ψ̇
ρ∗

)

− c2s∆̇
1+w

2ψ
ρ∗

+ ∆∗

(

2H2 − κ2

2 − 7Hψ
ρ∗ − 2ψ̇

ρ∗

)

+ ∆̇∗

(

H − 2ψ
ρ∗ − κ2

5
ψ

3

)

0-17



With ρ(b) << ρ∗ and ∆(b) << ∆∗

∆̈∗ + 2H∆̇∗ − κ2

2 ρ
∗∆∗ = −A1

t ∆∗ +
(
B1

t + C1

t2

)
∆∗

⇒ ∆̈∗ + A
t ∆̇∗ −

(
B
t + C

t2

)
∆∗ = 0

Solution for ∆∗ :

∆∗ ∼ t
1
2−

A
2 BesselI

[√
1 − 2A+A2 + 4C, 2

√
B
√
t
]

Solution for Weyl fluid fluctuation ∆∗ has a growing mode

Question: Is it compatible with observations ?
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Confrontation with observations

In terms of dimensionless parameters

ΩΛ = Λ
3H2

0
,Ωρ = κ2ρ0

3H2
0
,Ω∗ = 2C0

a4−α
0 H2

0

,Ωλ =
κ2ρ20
6λH2

0
; Ωtot =

∑

i Ωi = 1

Friedmann equations:

H2

H2
0

= ΩΛ + Ωρ
a3
0

a3 + Ω∗

a4−α
0

a4−α + Ωλ
a6
0

a6

Luminosity distance for FRW branes

dL (z) = (1+z)a0

H0

∫ a0

aem

ada

[ΩΛa6+Ωρa3
0a

3+Ω∗a
4−α
0 aα+2+Ωλa6

0]
1/2

For Ωλ → 0 =⇒ dΛλ∗
L = dΛCDM

L + Ω∗I∗

where I∗ is a function having elliptic integrals of 1st and 2nd kind

Weyl fluid with α = 2 − 3 is in nice agreement with SNe data

Results and Figure courtesy: L.A.Gergely et.al., 0709.0933[astro-ph]

0-19



0-20



Open issues

• Confront with observations : Recent studies have shown some
agreement with observations

• Calculate power spectrum etc and compare with ΛCDM

• Metric-based perturbations and allied phenomena

• Stability of bulk black hole under perturbations on Weyl fluid

• Expansion history of the universe : Studied to some extent
in DGP, what about generalised RS II ?

−→ Solve complicated Friedmann equations !

And miles to go...
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