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EFFECTIVE EINSTEIN EQUATIONS
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• What are the Einstein equations induced

on the four dimensional brane from the five

dimensional Einstein equations in the bulk?

• Are they the usual Einstein equations or

are there any novelties that arise?



THE EQUATIONS
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• Compare with usual Einstein equations

→ hij is induced metric on the brane

→ Quadratic in Tij contribution via Qij

→ Extra term Eij with properties:

(i) traceless (ii) no off–brane component

→ Usual Einstein equation recovered for sit-

uations where (i) the bulk Weyl is zero (ii)

quadratic contributions small



HOW TO DERIVE THEM?

• Bulk Field Equations:
(5)Gab = −(5)Λgab

• Coordinates, normals, induced metric, ex-

trinsic curvature

→ Brane located σ = 0

→ Brane tension λ, on–brane matter Tµν

→ σ a Gaussian normal coordinate orthogonal

to the brane (σ = 0)

→ (5)gab = hab + nanb, na unit normal, dσ =

nadXa, Xa bulk coordinates → Extrinsic curva-

ture : Kab = gc
a
(5)∇(cnb)

• Effective on–brane Einstein equations

→Encodes information of brane embedding, bound-

ary conditions

→ Uses (i) Gauss–Codazzi eqns (ii) projections

of 5D tensors into 4D ones (iii) decomposition

of Riemann tensor into Ricci and Weyl



THE RELEVANT STEPS

• Gauss–Codazzi equations
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• Riemann=Ricci+Weyl
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• Use in Gauss eqn to get (on the brane)
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• How to remove the K terms? Use the

Israel junctions conditions

∆Kij = 2Kij = −8πG5

(
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using Z2 symmetry

and Sij = −λhij + Tij to get
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• Also note conservation law:

6κ2

λ ∇jQij = ∇jEij



GENERAL COMMENTS

Gij = −Λhij + κ2Tij + 6κ2

λ Qij − Eij

• No effect of Eij if bulk Weyl is zero, as is

the case for the RS model

• Inclusion of bulk matter in the bulk equa-

tions leads to an additional term (the Fij

term) dependent on bulk stress energy

• One can construct effective equations in

other situations as well:

→ for a two brane model: hep-th/0210066

→ with a bulk GB term: hep-th/0608166

→ with two D-branes: hep-th/0405071

→ without Z2 symmetry: hep-th/0105091

• A major problem with this formalism is

that one cannot go back to the bulk–Taylor

expansion? So there are many bulk met-

rics which can give the same brane metric



COSMOLOGICAL SOLUTIONS

• The Friedmann equations (perfect fluid)

H2 = Λ
3 − k

a2 + κ2

3 ρ + κ2

6λρ2 +ρε
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Ḣ = k
a2 − κ2

2 (ρ + p) − κ2

2λρ (ρ + p) -23ρε

• Note the quadratic terms in ρ, p and the

terms coming from Eij (ρε).

• New solutions?

→ For an expanding universe, it is clear

that the quadratic terms will dominate in

the early stages of evolution

→ The Eij term can mimic the dark com-

ponents of the universe



SPHERISYMMETRIC, STATIC

• Effective ‘Vacuum’ has Eij

Rij = −Eij ; R = 0 ; ∇iEij = 0

• Solution similar to Reissner–Nordstrom,

except for the possibility of a different sign

in the ‘charge’ term

ds2 =
(

1 − 2GM
r + q

r2

)

dt2 + dr2
(

1−2GM
r + q

r2

) + r2dΩ2

• q > 0 is the RN case, q < 0 is new. For

(q < 0) there is a single horizon, outside

the Schwarzschild horizon which leads to

increase in entropy and decrease in tem-

perature.

•Note that bulk Weyl tensor effects are the

cause



DARK MATTER AS MODIFIED GRAVITY

Rotation curves of spiral galaxies

• A spiral galaxy is a disk of stars and dust

rotating about a central nucleus

The spiral galaxy M31 : also known as the

Whirlpool Galaxy



• Neutral hydrogen clouds are moving along

circular geodesics about the galaxy core

• Measure Doppler shifts in the 21 cm line

of the neutral hydrogen clouds

→ Find velocities, v(r) of the neutral hydrogen

clouds as a function of distance r from the

centre of the galaxy. We expect :

GM(r)
r2

= v2(r)
r

→ Inside the radius r = R containing luminous

matter M(r) ∝ r3, v(r) ∝ r

→ Outside the radius r = R containing lumi-

nous matter , v(r) ∝ r−
1
2

• Puzzle : v(r) remains approximately con-

stant beyond r = R → Mass M(r) ∝ 1/r

• Typical constant value of v : 200 km/s



• Thus beyond the region visible to us there

is non–luminous or DARK matter, which

gravitates

• Dark, non-luminous matter can be probed

by gravitational lensing

• Question : Can a modified law of grav-

ity explain the flattening of the rotation

curves?



Galaxy clusters and dark matter

• Galaxies are found in gravitationally bound

local groups called ‘clusters’

→ ‘Rich’ clusters : several thousand galaxies.

‘Poor’ ones : (Local Group) 30-50 galaxies

→ Shapes : spherical, flattened, irregular

→ Galactic content : spiral–rich, elliptical–rich

→ Strong radio sources or emit X-rays

The Virgo cluster : 60 million Ly away,

2500 galaxies, elliptical–rich



X-ray clusters

• X-ray satellite observations reveal :

→ Luminous matter in clusters is hot gas at

temperature of 10-100 million degrees, radiat-

ing X-rays.

→ Amount of hot gas is related to the total

X-ray luminosity

X-ray image of cluster superposed on opti-

cal image. The pink region shows the hot

gas emitting in the X-ray



• Study how much the gas is being squeezed

around by gravity. Estimate the total mass

in a cluster

→ Balance between the dark matter and the

pressure of the cluster ( related to the X-ray

emitting gas).

→ Assuming hydrostatic equilibrium, we can

estimate the amount of dark matter.

ρgas = ρ0

(

1 + r2

r2c

)−3β
2

;Pgas = kT
µmpc2

ρgas

→ Conservation law of energy momentum gives

the Newtonian potential and hence the total

gravitating mass in a cluster

dΦ
dr = − kT

µmpc2
1

ρgas

dρgas
dr

→ Solve to get Φ and hence the mass

→ The luminous matter is only 10-15 percent

• Can a modification of the law of gravity

explain things without actual dark matter?



MODELING CLUSTERS AND HALOS

• Use modified equations Gµν+Eµν = 8πG
c2

Tµν

Can the modified effective equations with
Eµν replace the notion of ‘dark matter’?

→ Assume the weak field line element within

the galaxy or cluster halo

ds2 = − (1 + 2Φ) dt2+(1 − 2Φ + 2Ψ)
[

dr2 + r2dΩ2
]

→ How to find Φ and Ψ?

• Φ is obtained from kinematics

→ Use geodesic eqn for individual halos

→ Use the hydrostatic equilibrium criterion for

clusters

• To find Ψ, use Φ above, the modified

Einstein eqn and the traceless character

of Eµν



• Final equation for potentials

∇2 (Φ − 2Ψ) = 4πG
c2

ρvis

Solution : Ψ = 1
2Φ −

(

∇2
)−1

ρvis

→ For clusters ρvis = ρ0

(

1 + r2

r2c

)−3β
2

→ Assume r >> rc and β = 2
3

→ Using representative values for constants :

Φ = 2kT
µmpc2

ln r
rc

; Ψ = 1
2Φ −

2πGρ0r2c
c2

ln r
rc

• In the usual analysis Ψ = 0 and we need

dark matter. In the modified theory Eµν

replaces dark matter.

• How to distinguish? Lensing calculations

reveal → deflection angle is .75 times the

Newtonian value !



CORRECTIONS: NEWTONIAN GRAVITY

• What are the corrections to Newtonian

gravity induced from the bulk?

• KK expansion of the graviton modes

ds2 = e−A(z)
[(

ηij + hij(x, z)
)

dxidj + dz2
]

RS gauge condition: hi
i = ∂ih

i
j = 0

• Perturbation equation:

hij = e
3
4AĥijΨ(z), (4)∇2ĥij = m2ĥij

−∂2
z Ψ +

(

15
4

k2

1+k|z|2
− 3kδ(z)

1+k|z|

)

Ψ = m2Ψ

For large z potential goes as 1
z2 (Bessel

equation)



In general the potential has the shape of

a volcano

Match solutions inside and outside the well

to get Ψm(0) =
√

m
k

Use Ψm(0) in the formula:

U(r) ∼ GM1M2
r + 1

M3

∫∞
0 dmM1M2e−mr

r Ψ2
m(0)

To get:

U(r) = GM1M2
r

(

1 + C
(kr)2

)

• Note the additional term which could

be significant at short distances–short dis-

tance tests may detect such terms.



POSSIBLE OPEN ISSUES

• Understanding the effects of the quadratic

stress energy term

• Understanding the effects of bulk matter

on the brane equations

• Linking up the Kaluza-Klein modes ob-

tained in a perturbative set-up with the

effects of Eij

• Investigating the consequences of the

other effective equations.


