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Large Extra Dimensions

e Models of "Extra Dimensions" are now studied as serious contenders for "Physics Beyond
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Large Extra Dimensions (ADD Scenario)

® Space time My X K4 FACTORISABLE GEOMETRY

My : 3+1 dim space time ICq : Compact space of size R
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® Space time My X K4 FACTORISABLE GEOMETRY

My : 3+1 dim space time ICq : Compact space of size R

e SM localised on a 3-brane embedded into the 4+d dim space time with d compact extra
dimensions which can ONLY be probed by gravity

4T Brane
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IDimension
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Brane—-—world Picture

e Gauss law in 4+d dim with d compact dim of radius R
r< R >R

1 1
V(r) ~ TR s V(r) ~ TR
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Large Extra Dimensions

® r > R gravitational flux lines in 4+d dim are constrained in the compact dim and hence the
potential is effectively r—1 at large distances

2+d pd
MI% ~ Mg R

e Mp: 4 dim Planck scale @ Mg: ~ TeV 4+d dim Planck scale e R: radius of
compactification, could be large compared to a TevV—1
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Large Extra Dimensions

® r > R gravitational flux lines in 4+d dim are constrained in the compact dim and hence the
potential is effectively r—1 at large distances

2+d pd
MI% ~ Mg R

e Mp: 4 dim Planck scale @ Mg: ~ TeV 4+d dim Planck scale e R: radius of
compactification, could be large compared to a TevV—1

—30
R~102 17 cm R ~10a 13 Gev
d R(cm) | R
1 1013 10— 27 eV
2 10— 2 10— 3 eV
3 10— 7 100 eV
6 10—12 | 10 MeV

e Only Gravitational field can probe the full 4+n dim space, deviation from Newtonian gravity
puts constraint on number of extra dim

d > 2 Possible

If Fundamental Planck Scale Mg ~ 1 TeV, "no Hierarchy problem".
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Kaluza-Klein Modes

e Extra dimensions being compact, gravitational field will be periodic function in the extra
dimension.

® In 4-dim it would correspond to nearly mass degenerate tower of KK modes m2 ~ 7i?/R?
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Kaluza-Klein Modes

e Extra dimensions being compact, gravitational field will be periodic function in the extra
dimension.

® In 4-dim it would correspond to nearly mass degenerate tower of KK modes m2 ~ 7i?/R?

graviton
each
separated
by
q 2 m << GeV
R

Our World 3+1 dim.

Each couples to the SM field with a strength
1/M,

NI

Massless graviton and KK modes couple with SM fields with coupling M;l ~ R
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Kaluza-Klein suppression
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Kaluza-Klein suppression

2n G"
- P — 1 1 1
a N Rf SmeTmIiiie of
e State density of KK modes ~ V;
d. d—2
R m_

Pma) = (amyarar(ay2)
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Kaluza-Klein suppression

! >, G

— > — 1 1
) ~LE 2n QZ—mZ tie
q

e State density of KK modes ~ V;

d. d—2
R m_

~ (4m)d/2T(d/2)

p(mz)

e (Coupling)? (Sum over the KK mode) leads to

1 \?2 1 1 1
— Vi~ — C(d,M d
<R%> ;Qz _m% +'L€ Rd d Rd ( 9 S) R
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Kaluza-Klein suppression

NI

! 5, G"

— > — 1 1 1
_ ~ RS 2om Q2-mZ+tic o
q

e State density of KK modes ~ V;

Rd'rn,d_2
n

~ (4m)d/21(d/2)

p(mz)

e (Coupling)? (Sum over the KK mode) leads to

1 \?2 1 1 1 1
. — Vd S —— C(d Ms) Rd _
(R%) zn: Q% —m7 + ie R4 R4 ’ nitd
1 1

M§+d ~ (TeV)4td

Planck suppression is compensated by High multiplicity of KK modes
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Kaluza-Klein suppression
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Kaluza-Klein suppression

2
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e State density of KK modes ~ Vy
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Warped Extra Dimension

e Non-Factorisable geometry, 5-dim AdS space— constant negative curvature

ds? = e~ 2Krell Nuv dxetdx’ + r2 d¢?

e Extra 5P dim compactified to the orbifold S* /Z>

St:y=y+27rR and Zs: y= —y
leads to compactification on a segment of size wR.
e Two 3-Branes located at orbifold fixed points [0, wR)].

e TeV Brane (SM constrained) at y = wR

e Planck Brane (Gravity resides) aty = 0

® gravity propagates the bulk.
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Warped Extra Dimension

® [nteraction of RS KK tower with SM fields on the
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® 1z, -the zeros of the Bessel function J (x)
® The zero-mode couples weakly and decouples

e The couplings of the massive RS gravitons are enhanced by the exponential e™* < |eading
to interactions of electroweak strength.
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Ar ~ Mpe me™ ~ O(TeV)

e Zero mode decouples (massless graviton) Newtonian Gravity intact M, !
e Excited massive KK modes couple to SM with TeV—1! suppression

M, = x, K e X" =2, mo

® 1z, -the zeros of the Bessel function J (x)
® The zero-mode couples weakly and decouples

e The couplings of the massive RS gravitons are enhanced by the exponential e™* < |eading
to interactions of electroweak strength.

e Two basic parameters of the RS model are

mo = IC e KTeT co = ——
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Warped Extra Dimension

The propagator:

Pc(q) = D(QZ)BMVAp(q) ’
BHVPU(q) — <9up - #) <Qua — ]\I;I 2) + <gu0' — —]\Z 2) <Qup — ]\2 ’;)
n n n n

n—1\"" M2 )\T7 M2 )
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Warped Extra Dimension

The propagator:

Pa(q) = D(Q*)Buuap(a),
@ = =355 e 3 o = 205) (- 2
o (o — 22 ) (a0 - 222 ).
’D(Qz) _ i 1 _ )\2,

n=1

M, -the masses of the individual resonances, I',, are the widths.
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Warped Extra Dimension

The propagator:

Pc(q) = D(QZ)BMVAp(q) ’
quq qv 4o 91490
By,upa' (CI) — (gup - #) <gua' - ]\2 2) + <gu0' — #) (gup —
n n n

. 2 g _q;,LQV g _qpqo'
n—1\""""  M,? T M,2? )

> 1 A
D(Qz) — . = ’

M, -the masses of the individual resonances, I',, are the widths. M\ is defined as

© x2 —x2 —i;—%wn
ANxs) = E 5 5 = , xs = Q/my.
x — Ty +
n=—1 S n mo

We have to sum over all the resonances to get the value of A(xs).
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Phenomenology with Extra-Dimension

In the SM, the partonic cross sections decreases with the energy scale (Q or pr involved):

d ~SM ('§7Q2) ~

dQ2 Tab 5Q2
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Phenomenology with Extra-Dimension

In the SM, the partonic cross sections decreases with the energy scale (Q or pr involved):

1
3Q>

d .
sz"&gé\/[ (3,Q%) ~

In the ADD, the partonic cross sections increase monotonically with the energy scale involved:

d—2
d ~ADD (4 2 Q2 QG
Mg) ~ (= Y

e Gravity mediated cross sections can show up at high Q.

d _ ~ Q6
Q2 o'fbs (S, Qz, Ms) ~ cg)\z <—§ mg), Q < mo

® The processes where the virtual/real KK gravitons contribute significantly:
(1) Di-lepton or Drell-Yan production at large invariant mass Q

(2) Di-photon or Di-boson production at large Q, Pr
(3)Observables with missing energy (...) - - -
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Drell-Yan Process

Pi(p1) + Pa(p2) — [V, Z, G| + hadronic states(X)
> It (k1) +17 (k2) (k1 + k2)? = Q2
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Drell-Yan Process

Pi(p1) + Pa(p2) — [V, Z, G| + hadronic states(X)

SN l+(k:1) + 1 (k:z)

N

(k1 + k2)? = Q7

T

Z*

q
SM
q
S
N -
g G*
_______ Gravity

T

5
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Parton Model

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:

~Qa T
25 doP1P2 (7, Q) Z/ &0y (@, 1r) 28 45" (2, Q7 pur )
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Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:
28 do™ 7 (1, Q%) = 3 / &0y (@, 1r) 28 45" (2, Q7 pur )
5

® The perturbatively calculable partonic cross section:
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Parton Model

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:
2Sda'P1P2 ‘T,Q Z/ —<I>ab (x, uF)2sd“a’b (%,Qz,up>
® The perturbatively calculable partonic cross section:
déeb (z, Qz,MF) _ Z (as (MR)> dea?s (@) (Z,QZ,MF,MR) (1)

® The non-perturbative flux:

Pay (@, pr) = /:—fa(z ur) fo (= nr)
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Parton Model

Hadronic cross section in terms of partonic cross sections convoluted with appropriate PDF:
28 do™ 7 (1, Q%) = 3 / &0y (@, 1r) 28 45" (2, Q7 pur )
5

® The perturbatively calculable partonic cross section:

~a s\ ~ab,(1
do b (Z, Qza /J'F) — Z ( ( R)> do 6,(4) (Z, Q27 NF?IJIR) (1)
® The non-perturbative flux:

Pay (@, pr) = /:—fa(z ur) fo (= nr)

° ffl (x, pup) are Parton distribution functions:
® x is the partonic momentum fraction
® ..r IS the Renormalisation scale

® ..z IS the Factorisation scale

-p. 13/38



Source of Theoretical Uncertainties

- p. 14/38



Source of Theoretical Uncertainties

e Renormalisation scale
Due to UV divergence at beyond Leading Order

as — as(ug)

- p. 14/38



Source of Theoretical Uncertainties

e Renormalisation scale
Due to UV divergence at beyond Leading Order

as — as(pf)

® [actorisation scale
Originate from light quarks and massless gluon. Parton distribution functions are

renormalised at the factorisation scale ug

fa(m) ﬁfa(maﬂi‘) a=4gq,q,g

- p. 14/38



Source of Theoretical Uncertainties

e Renormalisation scale
Due to UV divergence at beyond Leading Order

as — as(pf)

® [actorisation scale
Originate from light quarks and massless gluon. Parton distribution functions are

renormalised at the factorisation scale ug

fa(m) ﬁfa(maﬂi‘) a=4gq,q,g

e Parton Distribution Functions
Not calculable but extracted from experiments in some factorisation scheme

- p. 14/38



Source of Theoretical Uncertainties

e Renormalisation scale
Due to UV divergence at beyond Leading Order

as — as(pf)

® [actorisation scale
Originate from light quarks and massless gluon. Parton distribution functions are

renormalised at the factorisation scale ug

fa(m) ﬁfa(maﬂi‘) a=4gq,q,g

e Parton Distribution Functions
Not calculable but extracted from experiments in some factorisation scheme

® Observables are "free" of ur and pp.

- p. 14/38



Source of Theoretical Uncertainties

e Renormalisation scale
Due to UV divergence at beyond Leading Order

as — as(pf)

® [actorisation scale
Originate from light quarks and massless gluon. Parton distribution functions are

renormalised at the factorisation scale ug

fa(m) ﬁfa(maﬂi‘) a=4gq,q,g

e Parton Distribution Functions
Not calculable but extracted from experiments in some factorisation scheme

® Observables are "free" of ur and pp.

e "Fixed order" perturbative results depend on g and pr.

- p. 14/38



Source of Theoretical Uncertainties

e Renormalisation scale
Due to UV divergence at beyond Leading Order

as — as(pf)

® [actorisation scale
Originate from light quarks and massless gluon. Parton distribution functions are

renormalised at the factorisation scale ug

fa(m) éfa(maﬂi‘) a=4gq,q,g

e Parton Distribution Functions
Not calculable but extracted from experiments in some factorisation scheme

® Observables are "free" of ur and pp.
e "Fixed order" perturbative results depend on g and pr.

e Can in principle give large uncertainties.

- p. 14/38



Source of Theoretical Uncertainties

e Renormalisation scale
Due to UV divergence at beyond Leading Order

as — as(pf)

® [actorisation scale
Originate from light quarks and massless gluon. Parton distribution functions are

renormalised at the factorisation scale ug

fa(m) _>fa(m,l«b%‘) a=4gq,q,g

e Parton Distribution Functions
Not calculable but extracted from experiments in some factorisation scheme

® Observables are "free" of ur and pp.
e "Fixed order" perturbative results depend on g and pr.
e Can in principle give large uncertainties.

It is hence important for extra dimension searches to have better control over the theoretical
uncertainties
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CTEQ/MRST

Various groups perform global analysis of wide rage of DIS an d other hadron scattering
data to get best fits to a particular order in QCD

PDFsat NLO PDFsat NLO

1.4 - fa Q) 4 14 | . Q@)
L CTEQ/ MRST Q2:(1 TeV)2 _ L CTEQ/ MRST Q2:(1 TeV)2

1.2 - 1.2

et T T T e,

1 1 /e, =
08 [ -4 o8 | R
I " 1 I s 1
- —_——— o — d - - —e—e— C -
- — — - ubar - - - —-b -
0.6 — dbar — 0.6 — g —
_Illl 1 1 1 IIIII| 1 1 1 IIIII| 1 1 1 IIIII| 1 1 I_ _Illl 1 1 1 IIIII| 1 1 1 IIIII| 1 1 1 IIIII| 1 1 I_
10™ 10°° 1072 107" 10™ 10°° 102 107"
@ 3 (b) X
o PDFs satisfies the general constraint, but could differ from each other as experimental
and theoretical uncertainties are involved, various assum ptions and initial conditions
are used
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Contributing Subprocess

Leading Order:

Standard Model Gravity
q+4q—~v/Z q+q— G
g+g9g—G

d G g G
q g

Born contributions

- p. 16/38



Natural question

® |s this leading order result stable in the perturbation theory?
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® The answer is NO

e Why should we ask this question at all here?

® Because we are dealing with partons such as quark and gluons at the initial state which are
sensitive to Factorisation scale even at Leading order.

1d
aoPF (2,Q%) =% [ Tal) (@7 3) o) (2.7 M2) + -

ab =

Leading Partonic cross section is "independent” of pu

e Uncertainty can come from Factorisation scale pr through the LO flux q;é%) (z, ur)

® How serious is it?
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Scale Variation of Flux at LHC

1 d=z T
(I)g,b(w9/1'F) — / ? fi (29 F’/F) fl{ (;a/-l'F) I =LO,NLO

o = 700 GeV, x = i, Q = 700GeV VS = 14 TeV

V'S
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Scale Variation of Flux at LHC

@~/ (p)

1 dz @x
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Scale Variation of Flux at LHC

1 d
I < I |
P p(zyur) = / - fo (zF) S (;,MF) I =LO,NLO
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pno = 700 GeV, = = %, Q = 700GeV VS = 14 TeV
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Scale Variation of Flux at Tevatron

1 d=z x
el ur) = [ Z fleue) f(Sur)  I=LO,NLO

po = 700 GeV, x = @, Q = 700GeV (VS = 1.96 TeV

>
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Scale Variation of Flux at Tevatron

1 dz x
cI)be(wall'F) = / - fi (2, LF) fl{ (;a”’F) I =LO,NLO
po = 700 GeV, = = %, Q = 700GeV (VS = 1.96 TeV
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Scale Variation of Flux at Tevatron

1 dz x
cI)be(mall'F) = / - fi (2, LF) fl{ (;aﬂF) I =LO,NLO

po = 700 GeV, x = , Q =1T00GeV (VS =1.96TeV
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We are in Business!
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e Compute Next to leading order NLO QCD corrections to LO prcesses
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We are in Business!

e Compute Next to leading order NLO QCD corrections to LO prcesses

os (1)

d6ap (8, Q%, u2) = d&'? (5,Q%, p2) |1 + AWM (3,Q%, u2, 1)

QCD corrections are larger than other EW and gravity corrections.

Standard Model Gravity
q+q—~/Z q+qd—G
g+g9g—G
NLO NLO
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d6ap (8, Q%, u2) = d&'? (5,Q%, p2) |1 + AWM (3,Q%, u2, 1)

QCD corrections are larger than other EW and gravity corrections.

Standard Model Gravity
q+q—~/Z q+qd—G
g+g9g—G
NLO NLO

e Energy momentum tensor is renormalised.
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We are in Business!

e Compute Next to leading order NLO QCD corrections to LO prcesses

As (MzR)

d6ap (8, Q%, u2) = d&'? (5,Q%, p2) |1 + AWM (3,Q%, u2, 1)

QCD corrections are larger than other EW and gravity corrections.

Standard Model Gravity
q+q—~/Z q+qd—G
g+g9g—G
NLO NLO

e Energy momentum tensor is renormalised.

e All the soft and collinear divergences are regulated in dimensional regularisation
n =4+ e.
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We are in Business!

e Compute Next to leading order NLO QCD corrections to LO prcesses

os (1)

d6ap (8, Q%, u2) = d&'? (5,Q%, p2) |1 + AWM (3,Q%, u2, 1)

QCD corrections are larger than other EW and gravity corrections.

Standard Model Gravity
q+q—~/Z q+qd—G
g+g9g—G
NLO NLO

e Energy momentum tensor is renormalised.

e All the soft and collinear divergences are regulated in dimensional regularisation
n =4+ e.

e Collinear mass factorisation is done in M S scheme.
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Virtual Corrections, qq — G

AG _ Al 2 (1) (0)G @nle
Ajg=Aq7 Tastlgg Ay +asAyy

q + g — G (1 loop):

\

RQ
Q

A
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Real emission, q g — g G

Q
Y
Q

q < —— > — -
G
q g
\\\
- G
q

Q|

QJ

\

A

—- — P - -
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Virtual Corrections, gg — G

AG, = AR +a. 218 @AY + a, A"

g+ g — G (1loop):

g g
G G
»>— »>—
g g
g 000 0) g m
G ' G
A »—

g.9999q) g. 9999 )"
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Real emission, gg — g G
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Real emissions, ¢ — q G

_ 1 0)G 1 0)G e
AS =a,l <pgg> R AV +1iY @Al ) + as ALY

Real emission,q g — q G
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Invariant mass distribution of lepton pair
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Invariant mass distribution of lepton pair

doP1P2

dQ?

258 (Ta Q2) —

ZfSM,q[qu(r,Qz)Qa(Aé%”z( Q%) + as A (1, Q%))
q

‘|‘(Hqg (7, Qz) + Hgq (T, Q2)) X a (1)7Z( Q2)]
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Invariant mass distribution of lepton pair

doP1P2

2S5
dQ?

(T, Q2) —

> Fsmg [qu(‘r,Qz)@) (A7 (1,Q%) + as A" (1,Q%))
q
+(Hqg(TaQ2)+ng("'aQ2)> X a (1)7Z( Qz)]
+) Fe [qu(T,QZ)@@(Ag‘QG( ,Q%) + as ALY (1, Q%))
q

-I-(Hqg (1, Q%) + Hyq (T, Qz)) X asAtgé)G(T’ Q%)

+Hygg (1, Q%) ® (AFC (1, Q%) + as ALY ( ,Qz))]
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Invariant mass distribution of lepton pair

doP1P2

2S5
dQ?

(T, Q2) —

Z-’F'SM q [qu (Ta Qz) ® ( (0)‘7Z( Qz) + A(l)'yZ( 7Q2))

‘|‘(Hqg (7, Qz) + Hgq (T, Q2)) X a (1)7Z( Q2)]

+>_ Fc [qu(‘r,Qz)@(Ag‘;G( ,Q?) + as ADC (1 ,Qz))
q
+( Hag (1, Q%) + Hyq(7,Q%)) ® as AL (1, Q%)

+Hgg (1,Q%) ® (A57 % (7, Q%) + as AL (7 ,Qz))]

Coefficient Functions Independent of ADD or RS Model
|
|
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RS Results

LHC TEVATRON
VS | 14 TeV 1.96 TeV
PDF MRST 2001 LO & NLO

Choice of scale

pr = PR & pp = Q
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RS Results

LHC TEVATRON
VS | 14 TeV 1.96 TeV
PDF MRST 2001 LO & NLO

Choice of scale

pr = PR & pp = Q

Distributions:

do’ (Q) do'(Q,Y)

dQ dQ dY

Qo
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RS Results

LHC TEVATRON

VS | 14 TeV 1.96 TeV

PDF MRST 2001 LO & NLO
Choice of scale UF = PR & pr = Q

Distributions:

daI(Q) do! (Q,Y)
dQ dQdY

‘Qo

K-Factor:

ol [daio@)]‘l[da{wo(@)]
dQ dQ

-p. 27/38



RS Results

LHC TEVATRON
VS | 14 TeV 1.96 TeV
PDF MRST 2001 LO & NLO

Choice of scale

pr = PR & pp = Q

Distributions:

do! (Q) do! (Q,Y)
dQ dQ dY
Qo
K-Factor:
KI = daiO(Q) o dO'JIVLo(Q)
B dQ dQ
R-Factor:
Rl — dol o (Quu=po)]  [doly,(Q,u)
LO — dQ 40 .
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Partonic Cross Section versus its Flux

e Parton level cross section increases monotonically with invariant lepton pair mass @ upto
Mo .

d ~RS (4 2 4 Q6
sz Gab (S,Q ,MS) ~Y COA § mg ’ Q < mo
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Partonic Cross Section versus its Flux

e Parton level cross section increases monotonically with invariant lepton pair mass @ upto
mMo.
d RS (s 2 4 Q°
szo'ab (3,Q%, Mg) ~ c A s mE )’ Q < mo

e The Parton flux

decreases as @Q or x increases.
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Partonic Cross Section versus its Flux

e Parton level cross section increases monotonically with invariant lepton pair mass @ upto
mMo.

d ~RS (A QZ M ) ~ 4A Q6 Q<
szo-ab S, ’ S Co - ) ™Mo

§ m8
e The Parton flux

decreases as @Q or x increases.
e At small Q Standard model dominates over Gravity interaction.

e Atlarge @ the gravity "cross section" is comparable to SM.
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Partonic Cross Section versus its Flux

e Parton level cross section increases monotonically with invariant lepton pair mass @ upto
mMo.

d ~RS (4 2 4 Q6
sz Gab (S,Q ,MS) ~Y COA § mg ’ Q < ™Mo

e The Parton flux

decreases as @Q or x increases.
e At small Q Standard model dominates over Gravity interaction.
e Atlarge @ the gravity "cross section" is comparable to SM.

e Atlarge @ the parton "cross section" dominates over "Flux" leaving "observable effect".
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| |
Flux at LHC and Tevatron

Pa(enr) = [ Lt fo(Zour) @=L

- p. 29/38



Flux at LHC and Tevatron

Pa(enr) = [ Lt fo(Zour) @=L

LHC (S=(14TeV)")
1e+07 T T T T T

1606 | (001)gg - -
o000

3
1000 |

100 ¢

10 | | | | |
0 0001 0002 0003 0004 0005 0006

x=Q4S
Gluon flux is largest at LHC
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Flux at LHC and Tevatron

1 dz T Q>
Pub(z, pr) = / — fa (z, F) fo (—aMF) r = —
x = z S
LHC (S=(14TeV)"?) Tevatron (S= (196 TeV)"2)
1e+07 . . . , , 1000 | . . . . .
4o —— 100 }
\ oo i
16406 | (0.0L)gg - : R
10 L
100000 | 1
01
é 10000 | * é
001 F
1000 0001
0.0001
100 +
1e-05
10 1 1 1 1 1 1606 , | | | | ~._t::,~.\.:\
0 0001 0002 0.00% 0004 0005 0006 0 05 o 015 0 05 03
X =Q4S | x=Q4S
Gluon flux is largest at LHC Quark-anti quark flux is largest at Tevatron

- p. 29/38



RS Scenario Results

1 A
D) = Y =2,
s — Mg 4+ iMpI'n mg
c2 c2
—2D(Q* = 22X

™mg ™mg
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RS Scenario Results

1 A
2 —_
D(Q?) L =
s — Mz + tM,T'y myg
c(2) 2
BD@) = B
mo
-1 T T T | T T = 1.7 B T T T T T T | T ]
10 do/dQ (pb/GeV) . [ K-Factor (Q) .
E 3 - m0:390 GeV
2C 3 - —_ — =
10 E = 1.6 — p — — \Co \0.01 -
3F 3 C / i
aF 3 1.5 — y —
10 ¢ = :/ ]
-5 n 3 B .
10 E 3 1.4 |/
6F - I 7
7E ] — ]
10 = 1.3 B |
—8§ s \ = L AU
10 = 7 SM - % ]
10 ~L _— SM+GR E_ N — — GR i
-10 3 N ——— SM+GR ]
10 1 1 1 | 1 1 1.1 1 1 1 | 1 1 1 1
130 1615 3100 130 1815
Q

e Away from the resonance region gravity contribution is negligible

e K-Factor behavior can be understood from the K(®) behavior for the RS model.

- p. 30/38



Rapidity Y distribution:

T T T ] 1.7

- T T T | ] B _ T T T — T ]
E d’°c/dQ dY (pb/GeV) E:ncfo389 Gev -K-Factor (Y) o E?)%o?gf GeV;
i o~ n B Q=1390 GeV]
-4 — - X A
10 L Q=1390 Ge\é 16 [ .
5[ 1 15 | ]
10 F E B ]
i 1 14 [ -
6| [ e e e e e e e o ” ]
10 - 1
1.3 | -
-7 : :
10 = — — -
C 3 1.2 —
- SM 3 _ ]
. _— - GR ’._ - -
sl —— SM+GR o - ]
10 ' ' ' | ' ' ' 1.1
-2 0 v 2 -2 0] 2

e K-Factor for rapidity distribution, close to to the first KK resonance mi ~ 1.5 TeV

e Gravity dominates the resonance region as can be understood from the K(9) behavior of
RS model.
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K-Factor
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e G(?)(Q) behavior is governed by a competing ‘couplings’ and PDF flux at LHC and TEV
e At high Q when Gravity contribution becomes comparable to SM, the PDF flux dictates the

proceedings
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R-Factor:

-1
do’io,NLo(Q’M = po)

I _
RLO,NLO — dQ
1.6 —— T
B R-Ratio (Q) m,=390 GeV T
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1.2 |\, (SM+GR)Lo

1.6

1.4

1.2

0.8

do'io,NLo (Q, 1)

dQ

Q=Qo
L R-Ratio (Y) -
L\ m,=390 GeV |

. c,=0.01
-\ Q=1390 GeV 7|
— Y =0 |
- \. -
- \- -
— \. 4
AN —
AN _
. —-— GR_, R ——
L — — GRyo T
(SM+GR), o
- (SM+GR)y.o | T
0
i

® Scale variation reduced considerably in going from

LO — NLO

Inclusion of SM to GR also reduces scale variation
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RS Scenario Results
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e Away from the resonance region gravity contribution is negl|
e K-Factor behavior can be understood from the
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Angular distribution:

do(Q, cos 0)
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Factorisation scale dependence of angular distribution:

Distributions Tevatron LHC
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RS Rapidity
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Summary

e Next to Leading Order coefficient functions for DY process in models of TeV-scale gravity are
available now.

e Various distributions viz. Q, xg, Y distributions and Ar g asymmetry at NLO are studied
for ADD & RS models.

e Theoretical uncertainties get significantly reduced at NLO level

e Quantitative impact of the QCD corrections for searches of extra dimension at hadron
colliders investigated
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