$$
i=\sqrt{-1}
$$

$$
\begin{aligned}
\frac{d}{d t} & =\cdot & \frac{d}{d x} & =\prime \\
\frac{d^{2}}{d t^{2}} & =\cdot & \text { Notations } & \frac{d^{2}}{d x^{2}}
\end{aligned}={ }^{\prime \prime} .
$$

## Hooke's Law:

$$
\begin{gathered}
F=-k x \\
m \ddot{x}+k x=0 \\
\ddot{x}+\omega_{0}^{2} x=0 \quad \text { SHM } \\
\omega_{0}=\sqrt{k / m} \quad \text { Angular frequency } \\
T=2 \pi / \omega_{0} \quad \text { Time period }
\end{gathered}
$$



$$
\omega_{0}=\sqrt{k / m}
$$




$I \ddot{\theta}=-M g d \sin \theta$

$$
\omega_{0}=\sqrt{\frac{M g d}{I}}
$$


$L \ddot{q}+q / C=0$

$$
\omega_{0}=\sqrt{\frac{1}{L C}}
$$

## Solution:

$$
\begin{gathered}
x(t)=A \cos \left(\omega_{0} t+\phi\right) \\
\dot{x}(t)=-A \omega_{0} \sin \left(\omega_{0} t+\phi\right)
\end{gathered}
$$

$\boldsymbol{A}=$ Amplitude,$\quad \phi=$ Phase


$A=2$ units
$\phi=30^{\circ}$
$\omega_{0}=\pi \mathrm{rad} / \mathrm{sec}$

## Exponential solution:

$$
z(t)=A \exp \left(i \omega_{0} t\right)
$$

$A=$ Complex amplitude

$$
A=|A| \exp (i \phi)
$$

Real and imaginary parts of $z(t)$ satisfy simple harmonic equation of motion

$$
x(t)=\operatorname{Re} z(t)
$$



## Additions of two SHMs become convenient

$$
\begin{gathered}
z_{1}(t)=A_{1} \exp \left(i \omega_{0} t\right) \\
z_{2}(t)=A_{2} \exp \left(i \omega_{0} t\right) \\
z(t)=z_{1}(t)+z_{2}(t)=\left(A_{1}+A_{2}\right) \exp \left(i \omega_{0} t\right) \\
\text { For, } \quad A_{1}=|A| \exp \left(i \phi_{1}\right) \\
A_{2}=|A| \exp \left(i \phi_{2}\right) \\
z(t)=z_{1}+z_{2} \\
=|A|\left[\exp \left(i \phi_{1}\right)+\exp \left(i \phi_{2}\right)\right] \exp \left(i \omega_{0} t\right)
\end{gathered}
$$

## Harmonic oscillator potential:

$$
V(x)=\frac{1}{2} k x^{2} \quad k=+\mathrm{ve}
$$




Lennard Jones potential, $V(r) \sim\left(\frac{a}{r}\right)^{12}-\left(\frac{a}{r}\right)^{6}$, for water

Arbitrary potentials can be well approximated by harmonic oscillator potentials near minima

Consider a potential $V(x)$. Let us assume a minimum at $x=x_{0}$, Taylor expand around $x=\chi$.

$$
\begin{aligned}
V(x)=V & \left(x_{0}\right)+\left(x-x_{0}\right) V^{\prime}\left(x_{0}\right) \\
& +\frac{1}{2!}\left(x-x_{0}\right)^{2} V^{\prime \prime}\left(x_{0}\right)+\cdots,
\end{aligned}
$$

$V^{\prime}\left(x_{0}\right)$ is zero and $V^{\prime \prime}\left(x_{0}\right)$ is positive since $x_{0}$ is a minimum of $V(x)$.

## TAYLOR EXPANSION

$$
\begin{gathered}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots \\
f(0)=a_{0} \\
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots \\
f^{\prime}(0)=a_{1} \\
f^{\prime \prime}(x)=2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2}+\cdots \\
f^{\prime \prime}(0)=2 a_{2} \\
a_{n}=f^{(n)}(0) / n!
\end{gathered}
$$

## TAYLOR EXPANSION

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{1}{2!} x^{2} f^{\prime \prime}(0)+\frac{1}{3!} x^{3} f^{\prime \prime \prime}(0)+\cdot \cdot
$$

## Problem:Show in general:

$$
\begin{gathered}
f(a+h)=f(a)+h f^{\prime}(a)+\frac{1}{2!} h^{2} f^{\prime \prime}(a)+ \\
\frac{1}{3!} h^{3} f^{\prime \prime \prime}(a)+\cdots \frac{1}{n!} h^{n} f^{(n)}(a) \cdots
\end{gathered}
$$



$$
\begin{aligned}
& \mathrm{V}(\mathrm{x})=\mathrm{x}^{2} \\
& \mathrm{~V}(\mathrm{x})=\exp \left(\mathrm{x}^{2} / 2\right)-1 \\
& \mathrm{~V}(\mathrm{x})=\mathrm{x}^{2}-\mathrm{x}^{3}
\end{aligned}
$$

## Cube of mass M and side $2 a$

Cylinder of radius $r$, fixed along a horizontal axis

Cube rocks on the cylinder for small angles, does not slip

Find time period



## Torque about Q:

$$
I \ddot{\theta}=-M g(r \theta \cos \theta-a \sin \theta)
$$

Moment of inertia of the cube about a horizontal axis passing through Q is I .
$\mathrm{I}=\frac{5}{3} M a^{2}$. Using small angle approximation,

$$
\frac{5}{3} M a^{2} \ddot{\theta}+M g(r-a) \theta=0
$$

$$
T=2 \pi \sqrt{\frac{5 a^{2}}{3(r-a)}} g
$$

## Energy of simple harmonic oscillator:

$$
\begin{gathered}
k . e .=\frac{1}{2} m \dot{x}^{2}=\frac{1}{2} m \omega_{0}^{2} A^{2} \sin ^{2}\left(\omega_{0} t+\phi\right)=\frac{1}{2} k A^{2} \sin ^{2}\left(\omega_{0} t+\phi\right) \\
\text { p.e. }=\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2} \cos ^{2}\left(\omega_{0} t+\phi\right)=\frac{1}{2} m \omega_{0}^{2} A^{2} \cos ^{2}\left(\omega_{0} t+\phi\right) \\
E=k . e .+p . e .=\frac{1}{2} k A^{2}=\frac{1}{2} m \omega_{0}^{2} A^{2}
\end{gathered}
$$

## Phase space:



$$
\begin{aligned}
E=\frac{1}{2} k A^{2} & =p^{2} / 2 m+\frac{1}{2} k x^{2} \\
\text { or, } 1 & =\frac{p^{2}}{m^{2} \omega_{0}^{2} A^{2}}+\frac{x^{2}}{A^{2}}
\end{aligned}
$$

