Coupled oscillators

(a.)

(b.)

Coupled pendula

Equations of motion

$$
m \frac{d^{2} x_{0}}{d t^{2}}=-k x_{0}-k^{\prime}\left(x_{0}-x_{1}\right)
$$

$$
m \frac{d^{2} x_{1}}{d t^{2}}=-k x_{1}-k^{\prime}\left(x_{1}-x_{0}\right)
$$

$$
q_{0}=\frac{x_{0}+x_{1}}{2} \text { and } q_{1}=\frac{x_{0}-x_{1}}{2}
$$

Normal modes

$$
\begin{gathered}
m \frac{d^{2} q_{0}}{d t^{2}}=-k q_{0} \\
m \frac{d^{2} q_{1}}{d t^{2}}=-\left(k+2 k^{\prime}\right) q_{1}
\end{gathered}
$$

Centre of mass

$$
\omega_{0}=\sqrt{\frac{2 k}{2 m}}
$$

Relative coordinate

$$
\begin{aligned}
& \tilde{k}=\left(k+2 k^{\prime}\right) / 2 \\
& \omega_{1}=\sqrt{\frac{k+2 k^{\prime}}{m}}
\end{aligned}
$$

In-phase mode

Out-of-phase mode

$$
\begin{gathered}
q_{0}(t)=A_{0} e^{i \omega_{o} t} \\
q_{1}(t)=A_{1} e^{i \omega_{1} t} \\
A_{0}=\left|A_{0}\right| e^{i \psi_{0}} \quad \text { etc. }
\end{gathered}
$$

$$
x_{0}(t)=\left|A_{0}\right| e^{i\left(\omega_{0} t+\psi_{0}\right)}+\left|A_{1}\right| e^{i\left(\omega_{1} t+\psi_{1}\right)}
$$

$$
\begin{gathered}
x_{0}(t)=A_{0} e^{i \omega_{0} t}+A_{1} e^{i \omega_{1} t} \\
x_{1}(t)=A_{0} e^{i \omega_{0} t}-A_{1} e^{i \omega_{1} t} \\
x_{1}(0)=0 \Rightarrow A_{0}=A_{1} \\
x_{0}(t)=A_{0}\left[e^{i \omega_{0} t}+e^{i \omega_{1} t}\right]
\end{gathered}
$$

$$
\dot{x}_{0}(0)=0 \Rightarrow \operatorname{Re}\left\{A_{0}\left[i \omega_{0}+i \omega_{1}\right]\right\}=0
$$

$$
\Rightarrow A_{0} \text { is real, }=\frac{a_{0}}{2}
$$

$$
\begin{aligned}
& x_{0}(t)=\frac{a_{0}}{2}\left[\cos \omega_{0} t+\cos \omega_{1} t\right] \\
& x_{1}(t)=\frac{a_{0}}{2}\left[\cos \omega_{0} t-\cos \omega_{1} t\right]
\end{aligned}
$$

$$
\begin{array}{r}
x_{0}(t)=a_{0} \cos \left[\left(\frac{\omega_{1}-\omega_{0}}{2}\right) t\right] \\
\cos \left[\left(\frac{\omega_{0}+\omega_{1}}{2}\right) t\right] \\
x_{1}(t)=a_{0} \sin \left[\frac{\left(\omega_{1}-\omega_{0}\right) t}{2}\right] \\
\sin \left[\left(\frac{\omega_{0}+\omega_{1}}{2}\right) t\right]
\end{array}
$$

Weak coupling
 $K^{\prime} \ll K$

$$
\omega_{1}=\sqrt{\frac{K}{m}\left(1+\frac{2 K^{\prime}}{K}\right)} \approx \omega_{0}+2 \Delta \omega
$$

$$
\frac{\Delta \omega}{\omega_{0}}=\frac{K^{\prime}}{2 K} \ll 1
$$

$x_{1}(t)=a_{0} \cos \Delta \omega t \cos \omega_{0} t$
$x_{2}(t)=a_{0} \sin \Delta \omega t \sin \omega_{0} t$

Stiff coupling $\quad K^{\prime} \gg K$

Connecting two masses with rigid rod

$$
\omega_{1} \gg \omega_{0}
$$

on a small time scale $\sim \frac{1}{\omega_{1}}$, we will not see the slow oscillation.

Find the eigen frequencies of the normal modes for the following coupled oscillaors.

The equations of motion

$$
\begin{aligned}
m \ddot{x}_{1} & =-k x_{1}-k^{\prime}\left(x_{1}-x_{2}\right) \\
m \ddot{x}_{2} & =-k^{\prime}\left(x_{2}-x_{1}\right)-k^{\prime}\left(x_{2}-x_{3}\right) \\
m \ddot{x}_{3} & =-k^{\prime}\left(x_{3}-x_{2}\right)-k x_{3}
\end{aligned}
$$

For eigen/normal modes substitute

$$
x_{1}=A \exp (i \omega t) ; \quad x_{2}=B \exp (i \omega t) ; \quad x_{3}=C \exp (i \omega t) .
$$

and write the equations in a matrix form, like the following

$$
\left[\begin{array}{ccc}
m \omega^{2}-k-k^{\prime} & k^{\prime} & 0 \\
k^{\prime} & m \omega^{2}-2 k^{\prime} & k^{\prime} \\
0 & k^{\prime} & m \omega^{2}-k-k^{\prime}
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=0
$$

Condition for the existence of solutions

$$
\left|\begin{array}{ccc}
m \omega^{2}-k-k^{\prime} & k^{\prime} & 0 \\
k^{\prime} & m \omega^{2}-2 k^{\prime} & k^{\prime} \\
0 & k^{\prime} & m \omega^{2}-k-k^{\prime}
\end{array}\right|=0
$$

Giving squares of eigen frequencies as

$$
\begin{aligned}
\omega_{0}^{2} & =\frac{1}{m}\left(k+k^{\prime}\right) \\
\omega_{ \pm}^{2} & =\frac{1}{2 m}\left[\left(k+3 k^{\prime}\right) \pm \sqrt{\left(k+3 k^{\prime}\right)^{2}-8 k k^{\prime}}\right]
\end{aligned}
$$

