Resonance: $\quad \omega=\omega_{0}-\Delta \omega$

$x(t)=A\left(\sin \omega_{0} t \cos \Delta \omega t\right.$
$\left.-\cos \omega_{0} t \sin \Delta \omega t-\frac{\omega}{\omega_{0}} \sin \omega_{0} t\right)$
$x(t)=A\left(\frac{\left(\omega_{0}-\omega\right)}{\omega_{0}} \sin \omega_{0} t-\Delta \omega t \cos \omega_{0} t\right)$
$\cos \Delta \omega t \approx 1$ and $\sin \Delta \omega t \approx \Delta \omega t$

$$
\begin{aligned}
& \text { Substituting, } \quad A=\frac{f_{0}}{\left(\omega_{0}^{2}-\omega^{2}\right)} \\
& x(t)=\frac{f_{0}}{\omega_{0}\left(\omega_{0}+\omega\right)}\left(\sin \omega_{0} t-\omega_{0} t \cos \omega_{0} t\right) \\
& \approx \frac{f_{0}}{2 \omega_{0}^{2}}\left(\sin \omega_{0} t-\omega_{0} t \cos \omega_{0} t\right)
\end{aligned}
$$

Near resonance:

Tacoma Narrows bridge pictures and movies are taken from the following sites. These are used for purely educational purpose.

http://www.enm.bris.ac.uk/anm/tacoma/tacoma.html
http://www.archive.org/details/Pa2096Tacoma
http://www.blogtelevision.net/index.php?p= Videos-Browse-by-Video-Screen-Shots \qquad 1,62\&offset=32

Factor: $1 / \pi$

$(1 / 2) \operatorname{Sin} 2 \omega t$

$\operatorname{Sin} \omega t+(1 / 2) \operatorname{Sin} 2 \omega t$

Sin $\omega \mathrm{t}+(1 / 2) \operatorname{Sin} 2 \omega \mathrm{t}+(1 / 3) \operatorname{Sin} 3 \omega \mathrm{t}$

6 terms of the series

10 terms of the series

20 terms of the series

$\operatorname{Sin} \omega t+(1 / 3) \operatorname{Sin} 3 \omega t$

$\operatorname{Sin} \omega \mathrm{t}+(1 / 3) \operatorname{Sin} 3 \omega \mathrm{t}+(1 / 5) \operatorname{Sin} 5 \omega \mathrm{t}$

6 terms of the series

10 terms of the series

20 terms of the series

$\operatorname{Cos} \omega t+(1 / 9) \operatorname{Cos} 3 \omega t$

$\operatorname{Cos} \omega \mathrm{t}+(1 / 9) \operatorname{Cos} 3 \omega \mathrm{t}+(1 / 25) \operatorname{Cos} 5 \omega \mathrm{t}$

8 terms of the series

Fourier Series: $\quad f(t), \quad 0<t<T$
$f(t)=A_{0}+A_{1} \operatorname{Cos} \omega t+A_{2} \operatorname{Cos} 2 \omega t$ $+A_{3} \operatorname{Cos} 3 \omega t+A_{4} \operatorname{Cos} 4 \omega t+\ldots \ldots$. $+B_{1} \operatorname{Sin} \omega t+B_{2} \operatorname{Sin} 2 \omega t+B_{3} \operatorname{Sin} 3 \omega t+\ldots$

$$
A_{0}=\frac{1}{T} \int_{0}^{T} d t \quad f(t)
$$

$A_{n} / 2=\frac{1}{T} \int_{0}^{T} d t f(t) \operatorname{Cos} n \omega t$
$B_{m} / 2=\frac{1}{T} \int_{0}^{T} d t f(t) \operatorname{Sin} m \omega t$
$\int_{0}^{T} d t \operatorname{Cos} n \omega t \operatorname{Sin} m \omega t=0$
$\int_{0}^{T} d t \operatorname{Cos} \mathrm{n} \omega t \operatorname{Cos} \mathrm{~m} \omega t=0$
$\int_{0}^{T} d t \operatorname{Sin} \mathrm{n} \omega t \operatorname{Sin} \mathrm{~m} \omega t=0$
Orthogonality relations
n and m
are different

$$
\begin{aligned}
& A_{0}+\frac{A_{1}}{2}\left[e^{i \omega t}+e^{-i \omega t}\right]+\frac{A_{2}}{2}\left[e^{i 2 \omega t}+e^{-i 2 \omega t}\right] \\
&+\frac{A_{3}}{2}\left[e^{i 3 \omega t}+e^{-i 3 \omega t}\right] \quad \cdots \cdots \\
&+\frac{B_{1}}{2 i}\left[e^{i \omega t}-e^{-i \omega t}\right]+\frac{B_{2}}{2 i}\left[e^{i 2 \omega t}-e^{-i 2 \omega t}\right] \\
&+\frac{B_{3}}{2 i}\left[e^{i 3 \omega t}-e^{-i 3 \omega t}\right] \quad \cdots \cdots \\
&={ }_{n=0}^{+\infty}\left[C_{n} e^{i n \omega t}+C_{n}^{*} e^{-i n \omega t}\right] \\
& \quad C_{n}=\left(A_{n}-i B_{n}\right) / 2
\end{aligned}
$$

