Double slit

A closer look

Curves of equal-path difference are
Hyperboloids of revolution

Transverse Section:

Straight fringes

Longitudinal section:

Circular fringes

Wave train

Many sinusoidal nearby frequencies are needed to construct the above

Band of frequencies $=\Delta \nu=1 /(\Delta t)_{c}$

Temporal coherence:

Coherence time:
$(\Delta t)_{c}=1 / \Delta \nu$
Coherence length:

$$
l_{c}=c(\Delta t)_{c}
$$

Red Cadmium $\quad \lambda=6438 \mathrm{~A}$
$\Delta \nu=10^{9} \mathrm{~Hz}, \quad l_{C}=30 \mathrm{~cm}$
Yellow Sodium $\quad \lambda=5893 \mathrm{~A}$

$$
\Delta \nu=10^{10} \mathrm{~Hz}, \quad l_{c}=3 \mathrm{~cm}
$$

He-Ne Laser
$\lambda=6328 \mathrm{~A}$

$$
\Delta \nu=10^{6} \mathrm{~Hz}, \quad l_{c}=300 \mathrm{~m}
$$

Temporal

Coherence

Spatial

Coherence

Problem: Find the ratio of intensities of dark and bright fringes.

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{1}}=E_{1} \exp \left(i\left(\omega t+\phi_{1}\right)\right) \\
& \mathbf{E}_{\mathbf{2}}=E_{2} \exp \left(i\left(\omega t+\phi_{2}\right)\right)
\end{aligned}
$$

Problem: Find the ratio of intensities of dark and bright fringes.

$$
\begin{aligned}
& \mathbf{E}_{\mathbf{1}}=E_{1} \exp \left(i\left(\omega t+\phi_{1}\right)\right) \\
& \mathbf{E}_{\mathbf{2}}=E_{2} \exp \left(i\left(\omega t+\phi_{2}\right)\right) \\
& \frac{I_{\min }}{I_{\max }}=\frac{I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}}}{I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}}}
\end{aligned}
$$

