Double slit

A closer look

Curves of equal-path difference are

Hyperboloids of revolution

Many sinusoidal nearby frequencies are needed to construct the above

Band of frequencies = $\Delta \nu = 1/(\Delta t)_c$

Temporal coherence:

Coherence time:

 $(\Delta t)_c = 1/\Delta \nu$

Coherence length:

$$l_c = c(\Delta t)_c$$

Red Cadmium $\lambda = 6438 \text{ A}$ $\Delta \nu = 10^9$ Hz, $l_c = 30$ cm Yellow Sodium $\lambda = 5893 \text{ A}$ $\Delta \nu = 10^{10}$ Hz, $l_c = 3$ cm He-Ne Laser $\lambda = 6328 \text{ A}$ $\Delta \nu = 10^{\circ} \text{ Hz}, \ l_c = 300 \text{ m}$

Spatial

Problem: Find the ratio of intensities of dark and bright fringes.

 $\mathbf{E}_1 = E_1 \exp(i(\omega t + \phi_1))$ $\mathbf{E_2} = E_2 \exp(i(\omega t + \phi_2))$

Problem: Find the ratio of intensities of dark and bright fringes.

 $\mathbf{E_1} = E_1 \exp(i(\omega t + \phi_1))$ $\mathbf{E_2} = E_2 \exp(i(\omega t + \phi_2))$ $I_1 + I_2 - 2\sqrt{I_1I_2}$ I_{min} $I_1 + I_2 + 2\sqrt{I_1I_2}$ I_{max}