Superposition of several sinusoidal waves with same frequency and polarization (oscillations in the same plane) but different amplitudes and phases is again a sinusoidal wave with the same frequency. Resultant amplitude and phase are obtained by adding the individual phasors vectorially.

Superposition

$$
\begin{gathered}
\left|A_{n}\right| \cos \left(\omega t+\phi_{n}\right) \\
=\operatorname{Re} \mathbf{A}_{n} \exp (i \omega t) \\
\mathbf{A}_{n}=\left|A_{n}\right| \exp \left(i \phi_{n}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{A}_{1} \exp (i \omega t)+\mathbf{A}_{2} \exp (i \omega t) \\
\quad+\mathbf{A}_{3} \exp (i \omega t)+\cdots \\
=\sum_{n} \mathbf{A}_{n} \exp (i \omega t) \\
=\mathbf{A} \exp (i \omega t)
\end{gathered}
$$

Resultant phasor

$$
\begin{aligned}
& \qquad \mathbf{A}=|A| \exp (i \phi) \\
& =\sum_{n} \mathbf{A}_{n}=\sum_{n}\left|A_{n}\right| \exp \left(i \phi_{n}\right) \\
& \text { Energy (Intensity): } \\
& \qquad I=\mathbf{A A}^{*}=|A|^{2}
\end{aligned}
$$

$\cos t+3 \cos (\pi / 4+t)+4 \cos (2 \pi / 3+t)$

$$
+2 \cos (\pi / 2+t)
$$

Traveling waves

$$
\begin{gathered}
y(x, t)=\left|A_{n}\right| \cos \left(k x-\omega t+\phi_{n}\right) \\
y(x, t)=\operatorname{Re} \mathbf{A}_{n} \exp (i(k x-\omega t)) \\
e_{n}(x, t)=\mathbf{E}_{n} \exp (i(k x-\omega t)) \\
\mathbf{E}_{n}=\left|E_{n}\right| \exp \left(i \phi_{n}\right)
\end{gathered}
$$

Wave vector k
(direction of propagation)

$$
k=2 \pi / \lambda
$$

Phase velocity $v_{p h}$

$$
v_{p h}=\omega / k
$$

Problem

Superposition of large number of phasors

 of equal amplitude a and equal successive phase difference θ. Find the resultant phasor.$$
\begin{aligned}
A= & |A| \exp (i \phi)=a+a \exp (i \theta)+a \exp (i 2 \theta) \\
& +a \exp (i 3 \theta)+\cdots a \exp (i(n-1) \theta)
\end{aligned}
$$

$$
\begin{aligned}
A & =a[1-\exp (i n \theta)] /[1-\exp (i \theta)] \\
& =a \frac{\sin (n \theta / 2)}{\sin (\theta / 2)} \exp (i(n-1) \theta / 2)
\end{aligned}
$$

$$
|A|=a \frac{\sin (n \theta / 2)}{\sin (\theta / 2)}
$$

$$
\phi=(n-1) \theta / 2
$$

$a=2 \mathrm{r} \sin (\theta / 2)$

When n is large and θ and
a are small such that

$$
\begin{gathered}
n \theta / 2=\alpha \\
n a=A_{0} \\
A=\left(A_{0} \sin \alpha / \alpha\right) \exp (i \alpha) \\
I=A A^{*}=A_{0}^{2} \sin ^{2} \alpha / \alpha^{2}
\end{gathered}
$$

Oscillating dipole

$\mathrm{q}(\mathrm{t})=\mathrm{q}_{0} \operatorname{Cos}(\omega \mathrm{t})$

Approximations

1. $\mathrm{d} \ll \mathrm{r}$
$\mathrm{q}(\mathrm{t})=-\mathrm{q}_{0} \operatorname{Cos}(\omega \mathrm{t})$
2. $\mathrm{d} \ll \mathrm{c} / \omega \sim \lambda$
$\mathbf{p}(\mathrm{t})=\mathrm{p}_{0} \operatorname{Cos}(\omega \mathrm{t}) \mathbf{z}$
Maximun dipole moment
3. $c / \omega \sim \lambda \ll r$

$$
\mathrm{p}_{0}=\mathrm{q}_{0} \mathrm{~d}
$$

Oscillating charges and dipole radiation

$$
\mathbf{E}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{\mathbf{e}_{\mathbf{r}^{\prime}}}{{r^{\prime}}^{2}}+\frac{r^{\prime}}{c} \frac{d}{d t}\left(\frac{\mathbf{e}_{\mathbf{r}^{\prime}}}{r^{\prime 2}}\right)+\frac{1}{c^{2}} \frac{d^{2} \mathbf{e}_{\mathbf{r}^{\prime}}}{d t^{2}}\right]
$$

$$
\mathbf{E}=\frac{q}{4 \pi \epsilon_{0} c^{2}}\left[\frac{d^{2} \mathbf{e}_{\mathbf{r}^{\prime}}}{d t^{2}}\right]
$$

Oscillating charges and dipole radiation

 For large distances (r) the first two terms die as $1 / r^{2}$, whereas the last term (radiation term) survives because it decays as $1 / r$.$$
\begin{aligned}
\mathbf{E} & =\frac{q}{4 \pi \epsilon_{0} c^{2}}\left[\frac{d^{2} \mathbf{e}_{\mathbf{r}^{\prime}}}{d t^{2}}\right] \\
E_{z}(r, t) & =\frac{q}{4 \pi \epsilon_{0} c^{2} r} a_{z}(t-r / c)
\end{aligned}
$$

$$
a_{z}(t-r / c)=\frac{d^{2} \mathbf{z}(t-r / c)}{d t^{2}}
$$

$\mathbf{E}(r, t)=-\frac{\mu_{0} p_{0}}{4 \pi r} \omega^{2} \cos (\omega(t-r / c)) \sin \theta \hat{\theta}$

