

Longitudinal waves in an elastic medium

Shown below is a long rod of cross sectional area A.

 $\xi(x)$ denotes the horizontal displacement

of a point on the rod originally at x.

What happens to an elastic solid when it is compressed or stretched?

Stress
$$=F/A$$

Strain $=\frac{\xi}{L}$
 $Y = \frac{Stress}{Strain}$ (Youngs modulus)
 $F = \left(\frac{YA}{L}\right)\xi$
 $F = kx \rightarrow Spring$

Equation of motion

Force equation for slab *x*

$$\Delta x \ \varrho A \frac{\partial^2 \xi(x,t)}{\partial t^2} = F$$

compression of the slab on the right is

$$\xi(x + \Delta x) - \xi(x + 2\Delta x)$$

Stress = F/A = Y. Strain

Force from the right on the slab

$$\left(\frac{YA}{\Delta x}\right)\left[\xi(x+\Delta x,t)-\xi(x+2\Delta x,t)\right]$$

$$\approx YA\frac{\partial\xi}{\partial x}\left(x+\Delta x,t\right)$$

Similarly the force from the left is

 $-\left(\frac{YA}{\Lambda x}\right)\left[\xi(x,t)-\xi(x-\Delta x,t)\right]$

Total Force

 $= YA \left| \frac{\partial}{\partial x} \xi(x + \Delta x, t) - \frac{\partial}{\partial x} \xi(x, t) \right|$

 $= YA \frac{\partial}{\partial x} \left[\xi(x + \Delta x, t) - \xi(x, t) \right]$

 $= YA\Delta x \frac{\partial}{\partial x} \left[\frac{1}{\Delta x} (\xi(x + \Delta x, t) - \xi(x, t)) \right]$

Force equation

 $\varrho A \Delta x \frac{\partial^2 \xi}{\partial t^2} = Y A \Delta x \frac{\partial^2 \xi}{\partial r^2}$

 $\frac{\partial^2 \xi}{\partial x^2} - \left(\frac{\varrho}{V}\right) \frac{\partial^2 \xi}{\partial t^2} = 0$

Wave equation

 $\frac{\partial^2 \xi}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2} = 0$

Speed of the wave

Solution of the wave equation

Change of variables

$$\frac{\partial \xi}{\partial x} = \frac{\partial w_1}{\partial x} \frac{\partial \xi}{\partial w_1} + \frac{\partial w_2}{\partial x} \frac{\partial \xi}{\partial w_2} \\ = \frac{\partial \xi}{\partial w_1} + \frac{\partial \xi}{\partial w_2}$$

$$\frac{1}{c} \frac{\partial \xi}{\partial t} = \frac{\partial \xi}{\partial w_1} - \frac{\partial \xi}{\partial w_2}$$

 $\frac{\partial^2 \xi}{\partial x^2} - \frac{1}{c^2} \frac{\partial \xi}{\partial t^2}$

 $= \left(\frac{\partial}{\partial w_1} + \frac{\partial}{\partial w_2}\right)^2 \xi - \left(\frac{\partial}{\partial w_1} - \frac{\partial}{\partial w_2}\right)^2 \xi = 0$

 $\Rightarrow \frac{\partial^2}{\partial w_1 \partial w_2} \xi(w_1, w_2) = 0$

1.
$$\xi(w_1, w_2) = \text{Constant}$$
 (not of interest)
2. $\xi(w_1, w_2) = f_1(w_1)$ (function of w_1 alone.)
3. $\xi(w_1, w_2) = f_2(w_2)$ (function of w_2 alone.)

Superposition of 2 and 3

$$\xi(w_1, w_2) = c_1 f(w_1) + c_2 f(w_2)$$

Interpretation of solution 2 arbitrary function of $w_1 = x + ct$.

$$\xi(x,t) = f(x+ct)$$

At t = 0, $\xi(x, 0) = f_1(x)$

At t = 1,

 $\xi(x,1) = f_1(x+c)$

Wave moving left

Similarly solution 3 is a wave moving right

 $\xi(x,t) = f_2(x-ct)$

