Forced (Driven) simple harmonic motion

Undamped forced oscillations: As we have seen in the last chapter that due
to the resistance oscillations eventually die down. To maintain the oscillations one
needs a driving force. First we shall study the forced oscillations without the damping
term. So the basic equation of motion in this case is

mi+kx = F(t) (1)
i+wix = F(t)/m. (2)

The general solution of the equation (2) is given as sum of two parts. First part is
known as particular solution, say P(t), which satisfies the equation (2). The second
part, known as complementary function, say C(t), is the solution of the equation (2)
with right hand side set to zero (i.e. solution of ordinary SHM). Writing in terms of
equations we have,

THY  wiP@) = F(0)/m, ®
?C(t) = _
P + wyC(t) =0, (4)

Adding equations (3) and (4) we have,

d*(P(t) + C(1))
dt2

So z(t) = P(t) + C(t) gives the general solution of the equation (2) with two arbi-
trary constants coming form the complementary function and determined by initial
conditions.

We shall now assume a sinusoidal time dependence (F'(t) = Fjsinwt) of forcing.
The angular frequency omega appearing in the driving force is called the driving
frequency. Why we would like to study the sinusoidal forcing will become clear as we
proceed. So the equation we are interested in solving, is

+uwo(P(t) +C(1) = F(t)/m. (5)

EF
i+ wir = EO sinwt = fosin wt, (6)

where, Fy/m = fy. Since we already know the complementary function we look for a
particular solution. We try a solution of the type P(t) = Asinwt. Substituting this
P(t) in the equation (6), we get

—Aw?sinwt + Aw] sinwt = f; sin wt. (7)

Above equation (7) finds the amplitude,

fo

A= -y ®
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The general solution can now be written as by adding the complementary function

z(t) = % sinwt + B cos wgt + C sin wyt. 9)
Wi — w
We find that as the driving frequency w approaches the natural frequency wy from
below the phenomenon of resonance occurs and the amplitude A tends to oco. Once
it crosses wy the amplitude tends to —oo. Now since we always consider amplitude
as a positive quantity we define the amplitude as |A| and compensate the —ve sign
of amplitude for w > wy including a phase in the argument of the sine function of
particular solution. For this we are left with two choices in hand sin(wt — 7) and
sin(wt + 7). We cannot a priori decide whether the oscillations lead or lag the driving
force. We take the hint from damped forced oscillations (which is to be done in the
next section) and settle for sin(wt — 7) for w > wy. So in this case there is an abrupt
change of —7 radians in the phase. So the first term of(9) is written as.
fo

z(t) = R sin(wt — ), (w > wo) (10)

The amplitude and the phase are plotted against the frequency below.
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Figure 1: Amplitude and phase of undamped driven oscillator as a function of driving
frequency w.

We fix B and C using some initial conditions. Let us choose z(t = 0) = &(t = 0) =
0. The condition z(0) = 0 fixes B = 0 and #(0) finds C = —— 1% = = — Aw/wy.
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Hence the solution (9) becomes,
. w .
z(t) = A(sin wt — — sin wyt) (11)
Wo

Following is a sample plot of behaviour away from resonance, We would now like
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Figure 2: Undamped forced oscillations away from resonance
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to investigate the behaviour of general solution (9) near resonance. Let us take
w = wy — Aw,

z(t) = A(sinwot cos Awt — cos wot sin Awt — Y sin wot) (12)
Wo

z(t) = A ((wowi—w) sin wot — Awt cos w0t> (13)
0

where in equation (13) we have used cos Awt ~ 1 and sin Awt ~ Awt. Substituting
the value of A from (8) we get,

Jfo )
z(t) = —————(sinwyt — wpt coswpt 14
(t) wo(wO+w)( 0 0 ot) (14)
~ f—OQ(sin wot — wot cos wot) (15)
2wg

Damped forced oscillations: Now we include the damping term in the L.h.s of
equation (2) and the equation becomes,

mi +2ri + kx = F(t) (16)
P+2B8i+wir = F(t)/m. (17)
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Figure 3: Undamped forced oscillations, behaviour near resonance

Again we shall again restrict ourselves to sinusoidal forcing. We shall start with
F(t) = Fycoswt. The equation becomes

F
i+ 2B + wiz = =2 coswt = f; coswt, (18)
m

The above equation can be solved by an elegant method, which we shall describe it
now. We write a companion equation of the equation (18) by changing the forcing
on the r.h.s. by Fjsinwt,

F
i+ 287y + woy = “Ysinwt = fysinwt, (19)
m
By multiplying the equation (19) by 7 and adding to the equation (18), we have,
. . 2 FO . .
Z+420%+ wyz = — exp(iwt) = foexp(iwt), (20)
m

where we have defined z = z + iy. Now if we solve the equation (20) and separate
the real and imaginary parts we would have the solutions for equations (18) and (19).
Now as described earlier the general solution of (20) will have two parts viz. the
particular solution and the complementary function and the latter we have already
solved in the last chapter so we find the particular solution. We also notice that if we
wait for longer times we would have the steady state solution which is basically the
particular solution. The complementary function gives the so called transient which
die down if one waits a little longer. For a steady state solution of the equation (20)
we try the form

z(t) = zp exp(iwt), (21)



where zj is a complex constant. Substituting this in (20), we have,
2 (—w? + 2iBw + wd) = fo, (22)
giving
Jo
(W — w? + 2ifw)
Now writing zg = |2o| exp(i¢p), we get

20] = J202 = 7 o (24)

Wi — w?)? + 45%02

and 8
—2Bw
= tan~" : 25
o=t (2) (25
Hence the particular solution is given by
z(t) = |zo0| exp(i(wt + @) = |20|(cos(wt + @) + isin(wt + ¢)) (26)

where |zy| and ¢ are given by (24) and (25) respectively. From (26) we can read off
the solutions of (18) and (19) as,

x(t) = |20| cos(wt + @) (27)
and
y(t) = |zo| sin(wt + ¢) (28)

respectively. The plots of amplitudes and phase as a function of driving frequency
is given in the figure (4). Now we can justify the choice of phase change of —7 at
w > wy for the case of undamped forced oscillator considered in the previous section.

Case 1: Low frequencies: w << wy: In low frequencies the response is Hooke’s
law like. It is stiffness dominated.

fo Fp

s _— — = —

120l wi ok
¢ —0

z(t) = =2 coswt

k

Case 2: High frequencies: w >> wjy: High frequency response is mass domi-
nated. The oscillator is totally out of phase with the driver.

fo

|20 — o2
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Figure 4: Amplitudes and phase of damped forced oscillator
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Figure 5: Forced oscillation amplitudes and phase for different resistances
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Figure 6: Forced oscillations with diffrent resistances

Jo

3 9
0n=2 _ 5

, B=0.5 5

>IN/ 4 5 ‘ 10 2
X(0)=3

X(0)=0 - 1

Figure 7: Forced oscillations with diffrent driving amplitudes
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z(l) =~ —
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Case 3: Intermediate frequencies: w =~ wy: In the intermediate frequency

regime the response is resistance dominated.
For w = wy

coswt

If 3 is very small compared to wy resonant frequency w,., approaches natural frequency
of the system.
Jo

|20l res = ——F—=——=
res 2/8 wg _ ﬁQ
The solution |zg| cos(wt + ¢) can be written as,
x(t) = Agps Sinwt + Agjqs coswt (29)

where, Agqas = |20/ cos¢ and Ay, = —|zp|sing. The amplitude Agps is called the
absorptive amplitude because the average power is non zero from the first term and
is zero for the second. Let us now calculate the instantaneous power absorbed by the
damped forced oscillator (18). It is given by,

P(t) = Fycos(wt)x(t) = —|z0| Fow cos(wt) sin(wt + ¢) (30)
We find the power averaged over one cycle,
< P >= FywAys < cos® wt > —FywAu,s < sin wt coswt > (31)

where < > denotes average value. We know that
< cos® wt >= ! /T dt cos®wt = ! /T dt(1 + cos 2wt) = ! (32)
~ T 2T Jo -2

where T is the time period. Similarly, it is easy to show that < sin wtcoswt >= 0.

Fyw|zo| sin ¢

< P >= FowAabs/Q = 9
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Figure 8: Average input power curve

LU2

(Wi — w?)? + 45%w?

<P>=rff (33)

Power peak is found for w? = w?

rfe _ K
432 4Ar’

w=y/wr+p2Lp
Averaged stored energy Full width at half maximum for the average power curve is
found to be equal to 20.

Problem: Show that the average power loss due to the resistance dissipation is
equal to the average input power calculated above in (33).

< P > 0=

At half maximum,

m
< E>= Z((A)Q "|‘W§)|ZO‘2

mfs (W’ +wp)
4 [(wg — w?)? + 45%w?]

Problem: Find the angular frequency for peak energy and value of peak energy.
Resonant quality factor is defined many ways:

QO = |ZO|res/|ZO‘st

]
Q0—25
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Figure 9: Average energy curve

Ezample 1: Galvanometer: A galvanometer is connected through a switch with
a direct-current source of constant EMF. At time t=0, the switch is closed. After a
sufficientlylong time the galvanometer deflection reaches its final value 0,,,,. What is
its motion between the initial position of rest, # = 0, § = 0, and the final positionf =
Omae? Take damping torque proportional to angular velocity. Distinguish and explain
graphically underdamped,critically damped and overdamped cases. Solution: We
solve the forced oscillator equation with constant forcing (i.e. driving frequency =0)
and given intial conditions and plot the various evolutions.
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Figure 10: Galvanmeter deflection
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Ezample 2: Telegraph: A radio receiver receives radio telegraph signals in Morse
code in the form of sinusoidal wave packets. a) The inductance of the circuit is 100

uH, the capacitance is 250 pF and the resistance is 0.2 ohm. Find the interval between
the impulses tsp needed to prevent two adjacent signals from merging.

b) Assuming the duration of the ‘dot’ signal to be t4,; = 1.5t, and that of the
‘dash’ tgqsn = 4.5, find the maximum amount of information that can be transmitted
per unit time.

Solution: a) t,, = twice the relaxation time is a safe margin because by this time
the amplitude will decay by nearly a factor of 10 and hence two separate signals will
be distinguished properly.

ty =27 =2/8=4L/R =2 x 1073 sec = 2 msec.

b) Let maximum of N pulses can be sent per sec. Then on an average there shall
be N/2 ‘dots’ and N/2 ‘dashes’, so

N N
Ntsp + Etdot + Etdash = 4Ntsp =1

giveing N = 125.
Appendix: Complex plane and phasors
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Figure 11: Phasors in complex plane
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