Damped simple harmonic motion

In reality there is always a resistance in any system. We neglected this when we were
dealing with SHM and that was an idealistic case easy to solve. Here we will study
SHM with damping. We shall restrict ourselves to a certain type of damping viz
the cases where the resistance is proportional to the velocity. There are two reasons
for studying this, firstly many of the realistic systems do have a viscous damping
proportional to the velocity and secondly in this case the equation of motion remains
linear and hence again has simple solutions. In its most general form the equation
will be written as

mi+2rc+kr = 0 (1)
2 k

Pt i+ —z = 0 2)
m m
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where we have substituted 8 = r/m and natural frequency wy = /k/m. In equation
(3) second term in the left hand side is the damping term or the resistance which is
proportional to the velocity (). Now depending upon the strength of the resistance
there can be various types of solution possible viz. overdamped, critically damped or
underdamped.

We try solutions of the form z = Aexp(yt). Substituting the above form of z in
the equation (3) we get,

Ay? exp(t) + 28Ay exp(yt) + wgAexp(yt) = 0, (4)
giving the following equation relating various parameters of the system.
v+ 267+ wi = 0. (5)

Equation (5) gives two roots for v as,

7= —B%\/B —ut. (6)

Case I: Overdamped (3% > w?) In this case the discriminant is real we have
two decaying solutions. A general solution can be written as a linear combination of
these two solutions,

x(t) = exp(—pFt)[A1 exp(y/ B2 — wd t) + Asexp(—y/ 2 — wi 1)] (7)

The initial conditions will decide the values of constants A; and A,. There will not
be any oscillations. The above solution can also be written in the following way,

z(t) = exp(—pBt)[Acosh(y/ 5% — w§ t) + Bsinh(y/ 82 — wd )], (8)

1



X( t ) Underdamped
0.25} Critical
0.2} Overdamped
0.15¢
0.1}
0.05]
1 IU/ 4 5

-0.05"

Figure 1: Underdamped, critically damped and overdamped cases

using hyperbolic functions.! We have,
A = (A+B)/2, Ay=(A—B)/2.

Initial conditions give,

Calculating the velocity and using again the initial conditions we have,

#(t) = Al(=B+ /82 — wi) exp(—pt + /% —wj 1)
+ Ag(=B — /B2 — wp) exp(—Bt — /B2 — w§ 1)

£(0) = —B(A1 + A2) + /8% —w§ (A1 — As)
(0) + Bz(0)
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1See appendix for hyperbolic functions
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Figure 2: Overdamped cases for diffrent resistances

Case II: Critically damped (3% = wj) In this case two solutions for y converge
to one. This solution is given by Aexp(—pft). The other solution is found to be
B texp(—pt). Combining these two solution we have

z(t) = (A + Bt) exp(—ft) (11)

Again A and B are fixed by initial conditions. Like overdamped case in this case
also we do not have oscillations. Once can show that in critically damped case it
takes least time to reach the mean position from the maximum displacement for the
system. In galvanometers nearly this condition is maintained so that the needle can
come to the zero position as soon as possible avoiding the oscillations once current
becomes zero.

Problem: Show the solution for critical damping as limiting cases of overdamped
solution.

Case I1I: Underdamped (3? < w?) Here discriminant is negative and hence we
have two oscillating solutions.

z(t) = exp(—Bt)[Ar exp(—iy/wg — 8% t) + Az exp(iy/w§ — 52 1)) (12)

We find z(t)*, the complex conjugate of z(¢). The * is a complex conjugate operation.
We have then,

x(t)" = exp(—pBt)[A] exp(ir/wi — B ) + Ajexp(—iy/wi — B 1)] (13)
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Figure 3: Underdamped oscillations

Since z(t) is real for all time. We have x(t) = z(¢)*. This puts the following restriction

on the amplitudes,
AT == AQ, A; == Al-

This enables us to write,

A+1B A—-1B
A, = +1 Ay = )
2 2

Then the solution (12) can be written as,
z(t) = exp(—pBt)(A cos(w't) + Bsin(w't)) (14)

where w' = (/w2 — 2. One can choose B = 0, by fixing appropriate initial conditions
giving the following form of solution,

z(t) = Aexp(—pt) cos(w't) (15)

Equation (15) shows a exponentially decaying term in conjunction with an oscillating

terms with angular frequency w’ = 4/ % — fn—i = y/wg — 2. wy is the natural frequency

of the system, that is angular frequency in absence of damping. More the damping
longer the time period of oscillations.

Problem: Find out initial conditions which would lead to the equation (15).
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Figure 4: Underdamped oscillations for different resistances
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Figure 5: Underdamped case showing amplitudes and an L-C-R circuit



If one slowly increases the resistance a situation will come when the discriminant
will vanish and the oscillations will cease and that happens for 3 = wy(i.e. 72 = km),
which is the ‘critical damping’ condition discussed earlier.

Energy stored in a damped harmonic oscillator In the case of damped
oscillator total energy of the system decreases with time. Since a damping factor
exp(—[t) is present in the expression of displacement z(¢). he total energy is given

by, .
E(t) = 5 exp(—28t)kA?, (16)

where A is the initial amplitude.
Logarithmic decrement: Logarithmic decrement id a measure of amplitude

decay and is given by,
0 =In(A4,/A,1) = BT, (17)

where A, is the amplitude in the n'" period and T is the time period of oscillations.
Relaxation time or modulus of decay: The time taken for the amplitude to
decay to < of its original value.
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Quality factor: The quality factor measures the energy decay rate.
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That is the number of radians through which the damped system oscillates as its
energy decays to % of its original value. For small resistance w' ~ wy, and @ = “0™.
Problem: Show that @@ = 27 (Energy stored in the system/Energy lost per cycle).
Problem: Draw the phase-space diagram of a damped simple harmonic motion.

Example: Damped SHM in LCR circuit: The voltage equation for the circuit is,
di
Ld—z +Ri+q/C =
or, Lj+ R¢+q/C = 0. (20)

where i is he current in the circuit. Comparing (20) with equation (1) we obtain the
solution for charge on the capacitor as,

q(t) = quexp(—Rt/2L + \/R?/AL? — 1/LC t) (21)

Problem: Find out the constraints on the resistance, capacitance and inductance for
different cases of damping.



Appendix:
Hyperbolic function:

exp (z) + exp (—x)

ho =
cosh z 5
L e () - e ()
2
cosh iz = exp (iz) +2exp (i) = CosZ
sinh iz = &P (zx) —2exp (—zx) =1sinx
dcoshzx . dsinh z
= sinh z, =coshz
dz dz

cosh?xz — sinh?z =1



