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and power spectrum
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_ Point sources ...
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where x = logo(S) and § is given in mJy.

Credit: di Matteo+ (2002); Wieringa (1991)



Point sources ...
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Table 1. Fiducial values of the parameters used for characterizing different
foreground contributions.

Foregrounds A(mK?) & B
Point source 1.3 e D=yl 2.07 0
(Poisson part)

Point source 6.1 x 103 (S]C—)‘,“)O'5 207 [ |
(clustered part)

Galactic synchrotron 700 2.80 2.4

Credit: di Matteo+ (2002); Ali+ (2008)
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rate modeling and removal

* Pindor et al. (2010): Removal from “dirty”
" snapshot image using match filtering
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The “dirty” beam/map
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After CLEAN
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accuracy, 0.05% accuracy in gain amplitude



- Accurate modeling and removal

¥ 'Pi”ndor et al. (2010): Removal from “dirty”
snapshot image using match filtering
— very accurate position will be helpful

> Datta et al. (2010): 0.1 arcsec position
accuracy, 0.05% accuracy in gain amplitude

> WSCLEAN + IONPEEL (Offringa+ 2014): 45
deg x 30 deg EoR-0 field with MWA ... one of
the deepest field with 45 hr time (Offringa+ '15)
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and remova
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What about marginally resolved sources?
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Wish-list

* Well-characterized calibrators for flux, phase,
bandpass and polarization calibrations

> Accurate gain calibration
> Direction dependent gain calibration
> Imaging with
— wide band, wide field, high resolution
— primary beam correction
— spectral index++ correction
— (multi-scale deconvolution)
* Fast and accurate subtraction of components



Wish-list

* Well-characterized calibrators for flux, phase,
bandpass and polarization calibrations

— a lot of progress over the last few years



Wish-list

* Well-characterized calibrators for flux, phase,
bandpass and polarization calibrations

> Accurate gain calibration
— (instrument + ionosphere) challenging
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e bandpass and polarization calibrations

> Accurate gain calibration
* Direction dependent gain calibration
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Wish-list

* Well-characterized calibrators for flux, phase,
bandpass and polarization calibrations

> Accurate gain calibration

> Direction dependent gain calibration

> Imaging with
— wide band, wide field, high resolution
— primary beam correction
— spectral index++ correction

Many recent algorithm developments (e.g.
Rao+ CASA CLEAN with MFS, AW-proj)



Wish-list

* Well-characterized calibrators for flux, phase,
bandpass and polarization calibrations

> Accurate gain calibration
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HTG E"

Less computation due to gridding, yet remove
noise bias self-consistently

> Taper the sky response, wide-field imaging,
primary beam corrections, direction dependent
gains will have less effect

* Reduce the contribution of residual point
sources far away from the field centre
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ipered Gridded Estimator

Veg = (U - Ui) Vi

Choudhuri et al. (2014, 2016) + Work in progress
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hered Gridded Estimator
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sults: Effect of tapering
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Different CLEANIing options
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Choudhuri et al. (2014, 2016) + Work in progress
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Directions ...

How accurately can we calibrate uGMRT low-freq.
— including polarization calibration

How accurately we can recover (point) source position,
flux density, spectral index?

— Effectiveness of wide band, wide field imaging

— CASA MEFS, AW-proj. with uGMRT

— How well we can model the primary beam (+ its
polarization properties)

— Marginally resolved source? multi-scale cleaning?

Optimum source identification, cataloguing ...



Conclusions ...

* Point source foreground removal is one of the major
challenges for EoR 21 cm experiments

* There are significant progress in some of the aspects
(e.g. imaging and deconvolution algorithms), but wide
field imaging with desired level of accuracy is still
challenging for multiple reasons.

® The Tapered Gridded Estimator can potentially takes
care of a few of the issues at least to some extent. It
seems to be a promising tools to handle both the
foreground and the noise bias.
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