

Square Kilometre Array - An overview

Raghunath Ghara
(NCRA-TIFR)

July 20, 2016

SKA1 SYSTEM BASELINEV2 DESCRIPTION

Document number	SKA-TEL-SKO-0000308
Context.....	AG-BD-RE
Revision.....	.01
Author	Peter Dewdney
Date.....	2015-11-04
Document Classification	UNRESTRICTED
Status	Released

SKA1-LOW CONFIGURATION

Document number	SKA-SCI-LOW-001
Context	PPP-PPP-PPP-PPP
RevisionA
Author	SKAO Science Team
Date	2015-10-28
Document Classification	UNRESTRICTED
Status.....	Draft

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 - starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies.

Total collecting area: **0.4km²**

Maximum distance between stations: **65km**

Total raw data output: **157 terabytes** per second
4.9 zettabytes per year

Enough to fill up **35,000 DVDs** every second

5x the estimated global internet traffic in 2015
(source: Cisco)

Compared to LOFAR Netherlands, the current best similar instrument in the world

25% better resolution **8x** more sensitive **135x** the survey speed

• **Main science goals :**

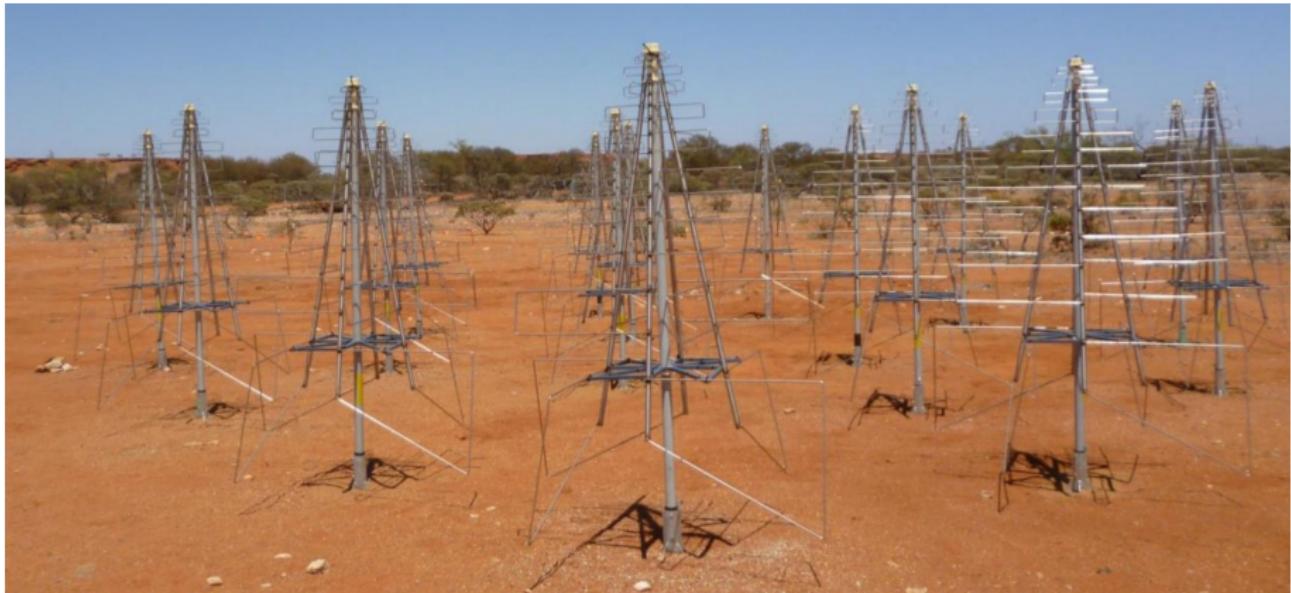
- Cosmic dawn
- Epoch of reionization
- Pulsar timing low
- Pulsar search low

• **Location :** Murchison Shire of Western Australia

• **Bandwidth :** 300 MHz (50 to 350 MHz frequency range)

• Will consist of an array of ~130,000 dual-polarisation antenna elements.

• **Aperture array stations** (10s of metres in diameter): Antenna elements will be combined in groups so as to each act like single large antennas.



- Number of aperture array stations ~ 564
- Capable of forming one or more 'beams' on the sky.
- Minimum/maximum separation between the stations: ~ 30 m/65 km.
- FOV ~ 20 deg 2 .
- Long/short dipoles at the bottom/top cover the lowest/highest frequencies

SKA1-low antenna configuration

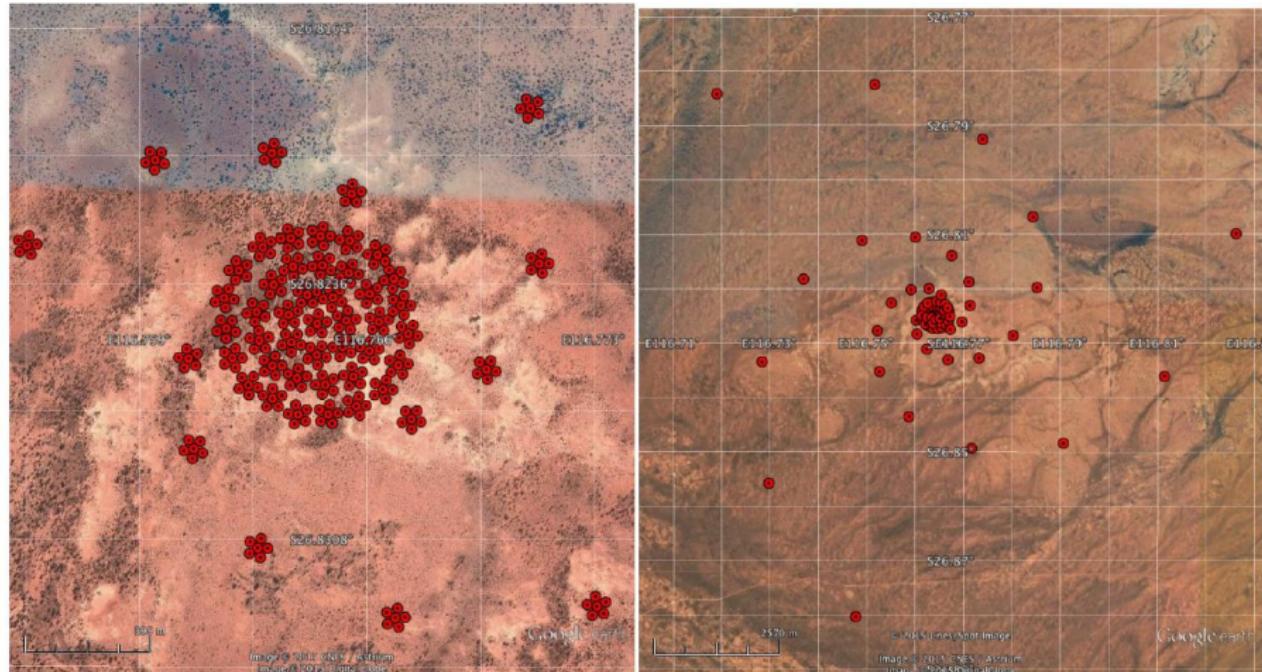


Figure 1: The SKA1-low core (left) and skirt (right). The tightly packed system of randomised concentric rings extends to a radius of about 350m. A tightly wound three arm logarithmic spiral extends between radii of 350m – 6400m.

SKA1-low UV coverage

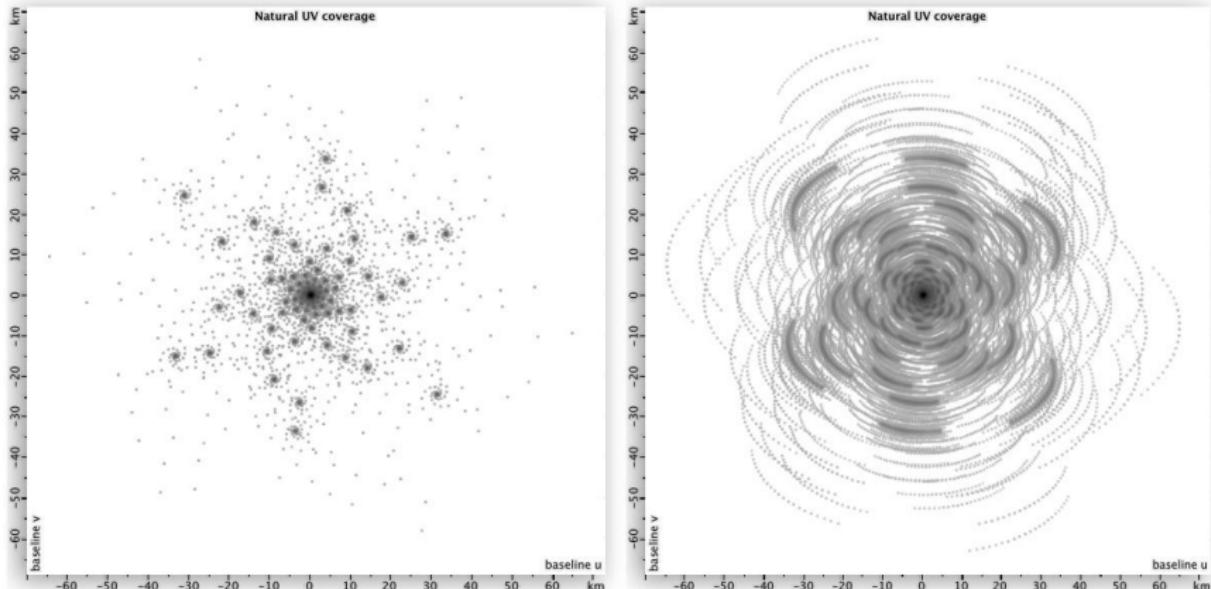
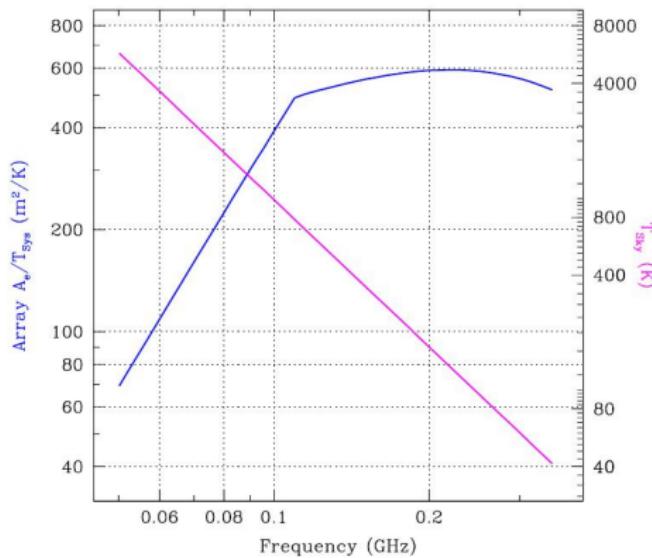


Figure 4: The SKA1-low snap-shot (left) and 4-hour tracking (right) visibility coverage for a monochromatic observation at a nominal declination of -30.

Sensitivity



- System Temperature
- $T_{sys} \sim 60 \times (300 \text{ MHz}/\nu)^{2.55} \text{ K}$
- The sensitivity curve drops steeply below 110 MHz because the sky noise, which dominates the system temperature
- Above 110 MHz the increase of collecting area as λ^2 almost cancels the sky noise, and the ratio (A_e/T_{sys}) is almost flat.

How will SKA1 be better than today's best radio telescopes?

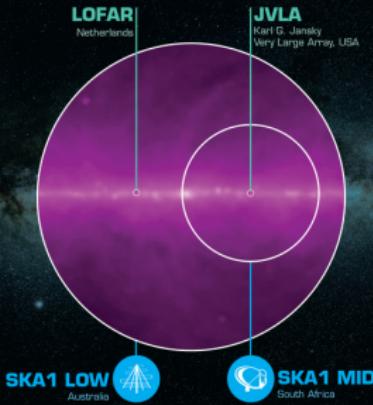
Astronomers assess a telescope's performance by looking at three factors - **resolution**, **sensitivity**, and **survey speed**. With its sheer size and large number of antennas, the SKA will provide a giant leap in all three compared to existing radio telescopes, enabling it to revolutionise our understanding of the Universe.

SKA1 LOW x1.2 LOFAR NL

SKA1 MID x4 JVA

RESOLUTION

Thanks to its size, the SKA will see smaller details, making radio images less blurry, like reading glasses help distinguish smaller letters.



SKA1 LOW x135 LOFAR NL

SKA1 MID x60 JVA

SURVEY SPEED

Thanks to its sensitivity and ability to see a larger area of the sky at once, the SKA will be able to observe more of the sky in a given time and so map the sky faster.

The **Square Kilometre Array** (SKA) will be the world's largest radio telescope. It will be built in two phases - SKA1 and SKA2 - starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - **SKA1 MID** and **SKA1 LOW** - observing the Universe at different frequencies.

SKA1 LOW x8 LOFAR NL

SKA1 MID x5 JVA

SENSITIVITY

Thanks to its many antennas, the SKA will see fainter details, like a long-exposure photograph at night reveals details the eye can't see.

Imaging the first sources during the cosmic dawn using SKA

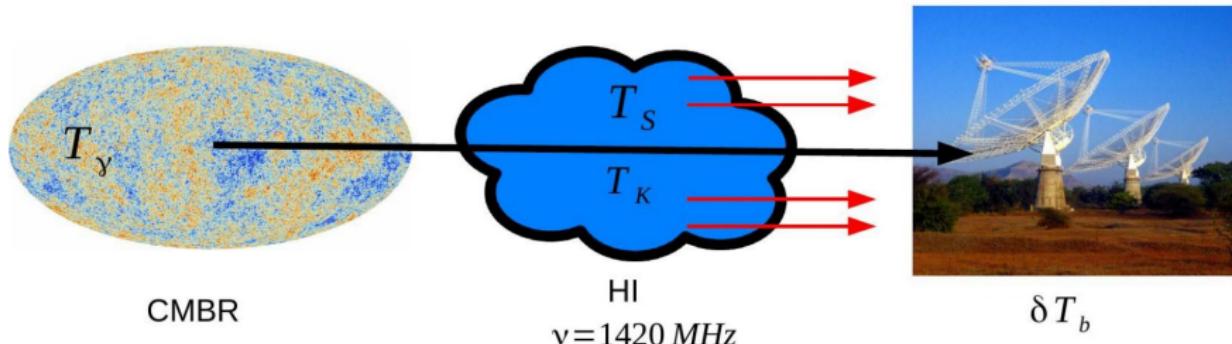
Ghara R., Choudhury T. R., Datta K. K., Choudhuri S., arXiv:1607.02779

Motivation



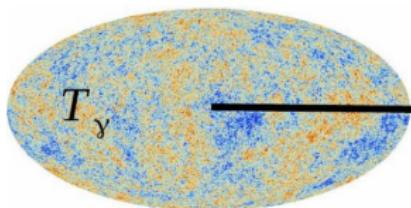
- Can we detect the first sources with radio interferometers like the SKA1-low? What informations can be obtained from that?
- IGM properties:
 - Neutral fraction
 - Kinetic temperature
- Source properties:
 - Mass of the source
 - Age
 - Escape fraction of UV photons f_{esc}
 - UV and X-ray luminosity etc..

Differential brightness temperature (δT_b)

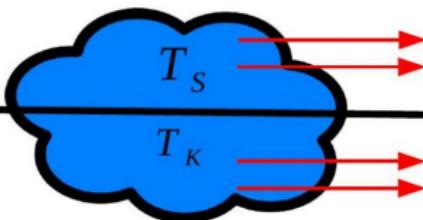


$$\delta T_b = 27 x_{\text{HI}} (1 + \delta_B) \left(\frac{\Omega_B h^2}{0.023} \right) \left(\frac{0.15}{\Omega_m h^2} \frac{1+z}{10} \right)^{1/2} \left[1 - \frac{T_\gamma}{T_S} \right] \text{ mK}$$

Differential brightness temperature (δT_b)



CMBR



HI
 $\nu = 1420 \text{ MHz}$

δT_b

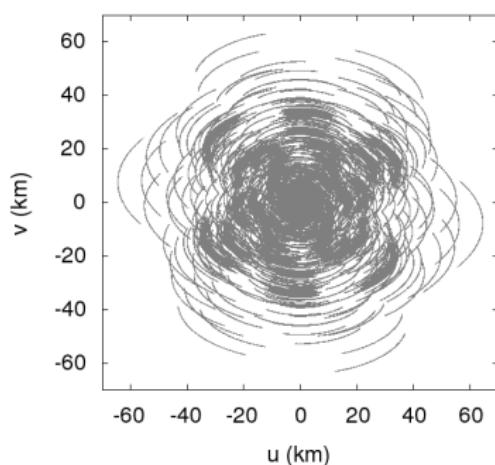
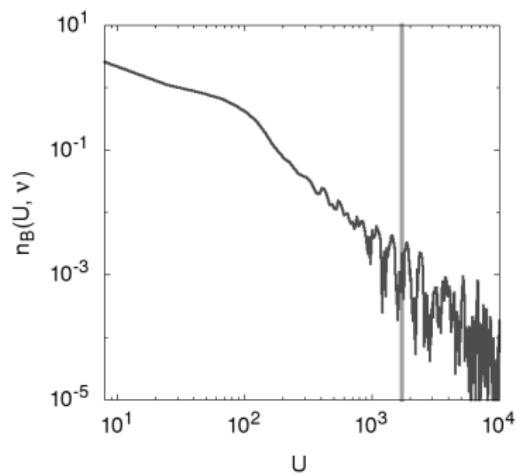
$$\delta T_b = 27 x_{\text{HI}} (1 + \delta_B) \left(\frac{\Omega_B h^2}{0.023} \right) \left(\frac{0.15}{\Omega_m h^2} \frac{1+z}{10} \right)^{1/2} \left[1 - \frac{T_\gamma}{T_s} \right] \text{ mK}$$

neutral fraction of hydrogen

CMBR temperature

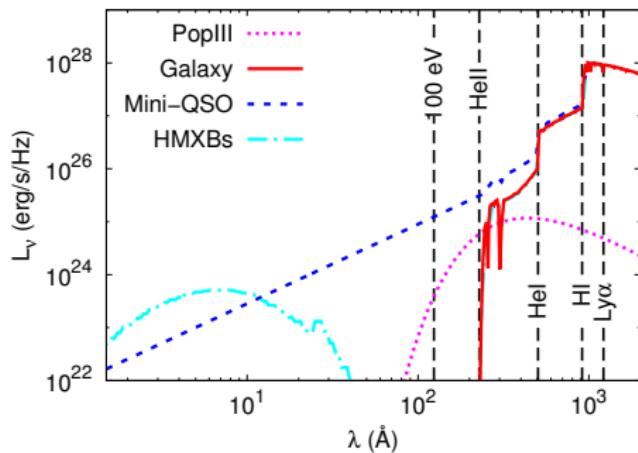
Spin temperature

SKA1-low Baseline distribution



- Baseline $U = d/\lambda$. d is the distance between the antenna pair and λ observational wavelength.
- $n_B(U, \nu)$ is the number of antenna pairs having same baseline U at frequency ν .

Possible sources: popIII stars, Galaxies, mini-QSO, HMXBs..

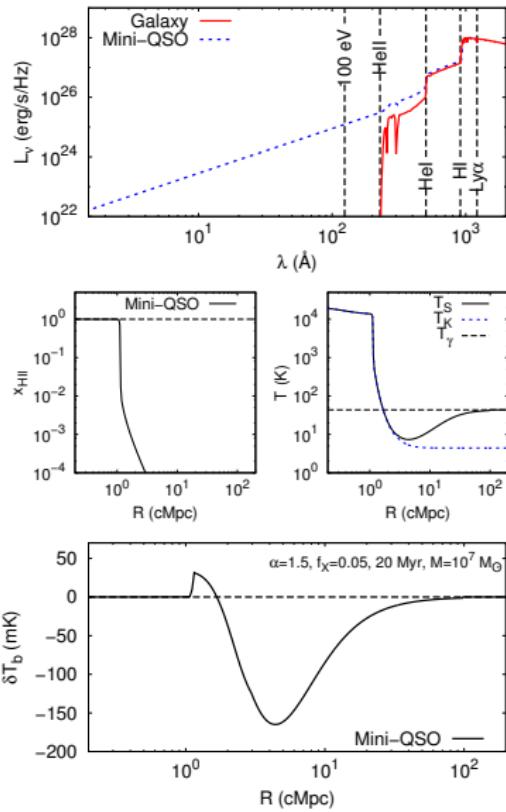


- $M_\star = 10^3 M_\odot$ for popIII
 $= 10^7 M_\odot$ for others.
- Spectral index $\alpha = 1.5$
- Ratio of X-ray and UV luminosity $f_X = 0.05$
- $f_{\text{esc}} = 0.1$
- $t_{\text{age}} = 20$ Myr

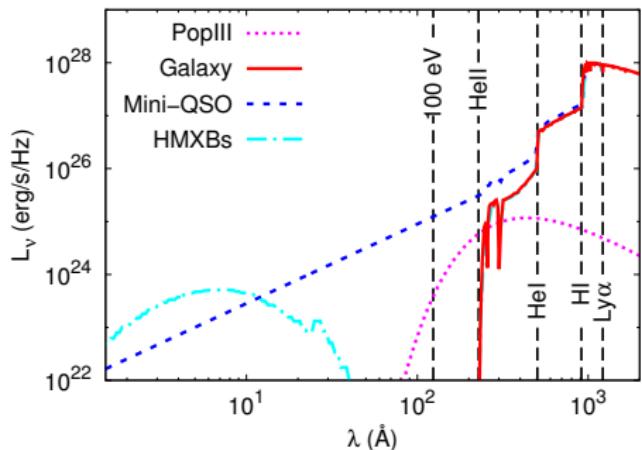
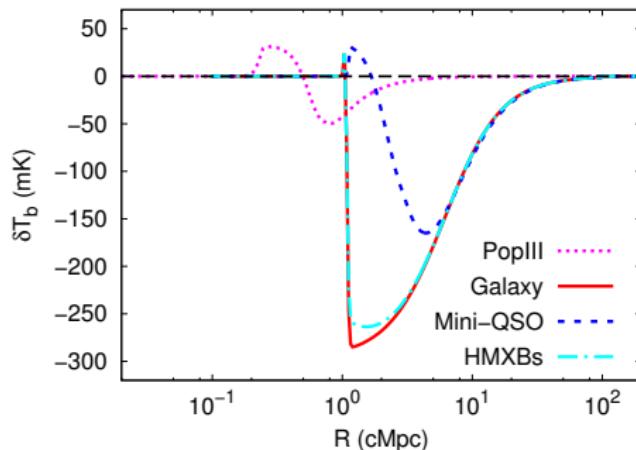
- The stellar part of the source is generated using PEGASE2 code : Salpeter IMF with $1-100 M_\odot$ population II stars, metallicity $0.001 Z_\odot$.
- Mini-QSO : $I_q \propto E^{-\alpha}$, PopIII : black-body spectrum, HMXBs : absorption of soft-X-rays in ISM (Fragos et al 2013)

One-dimensional radiative transfer

- Inputs
 - SED : Ly α , UV, X-rays
 - An uniform background IGM
- Generate x_{HII} and T_K profile
 - Photo-ionization, Collisional ionization, Recombinations
 - Photoelectric heating, Compton heating, cooling due to collisional excitation, Hubble expansion etc.
- Assume Ly α photon flux reduces as $1/R^2$ with radial distance R .
- Calculate the coupling coefficients and spin temperature (T_S) profile.
- Use x_{HII} and T_S profiles to generate δT_b profile.

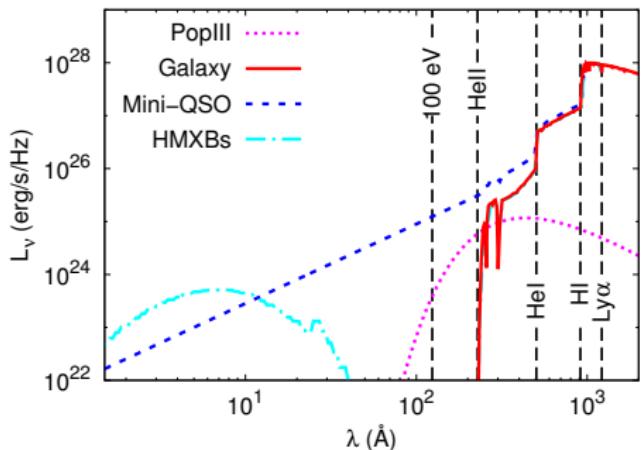
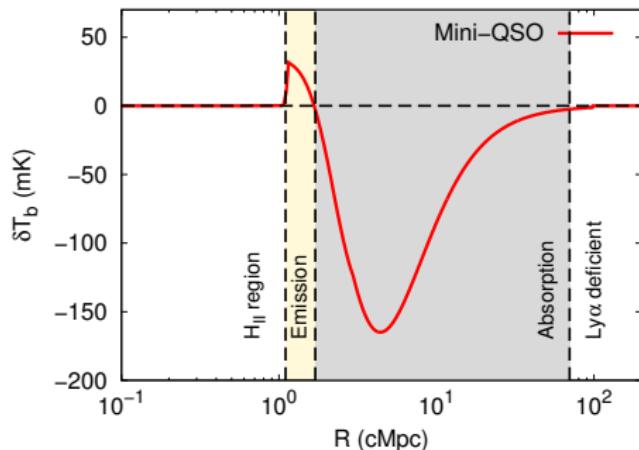


δT_b profiles



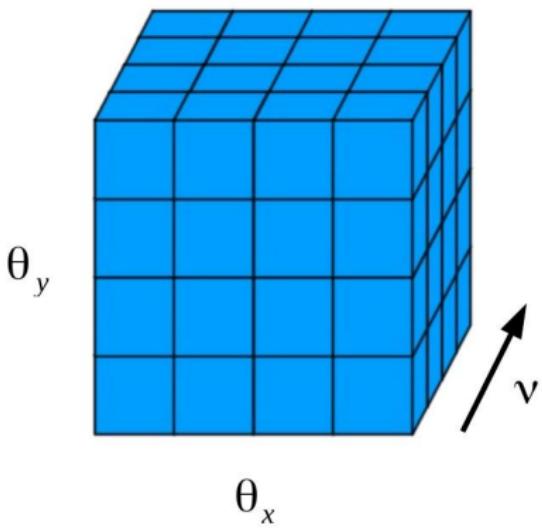
- Signals are different around different type of sources. Redshift = 15

δT_b profiles



- Signals are different around different type of sources. Redshift = 15
- δT_b pattern around a source :
 - H_{II} region at the center ($\delta T_b = 0$),
 - Emission region ($\delta T_b > 0$),
 - Absorption region ($\delta T_b < 0$),
 - Ly α deficient region ($\delta T_b \sim 0$).

Isolated source : simple Model



- The angular extent of the simulation box is determined by the minimum baseline.
- The angular resolution is determined by the maximum baseline.
- Length of the box along the frequency direction is determined by the observational band width.
- We assume that the source is at the center of the simulation box.
- We will image the central frequency channel.

Signal simulation

- Differential brightness temperature :

$$\delta T_b(\vec{\theta}, \nu) \propto x_{\text{HI}}(\mathbf{x}, z)[1 + \delta_B(\mathbf{x}, z)] \left[1 - \frac{T_\gamma(z)}{T_S(\mathbf{x}, z)}\right]$$

- Sky specific intensity :

$$I_\nu(\vec{\theta}) = \frac{2k_B\nu^2}{c^2} \delta T_b(\vec{\theta}, \nu)$$

- Flux per synthesised beam :

$$S_\nu = I_\nu(\vec{\theta}) \times \Delta\Omega,$$

where $\Delta\Omega = (\Delta\theta)^2$ is the beam solid angle.

- Dirty image : We first obtain the visibilities of the signal at each uv grid point and then multiply the signal with the baseline (uv) sampling function.

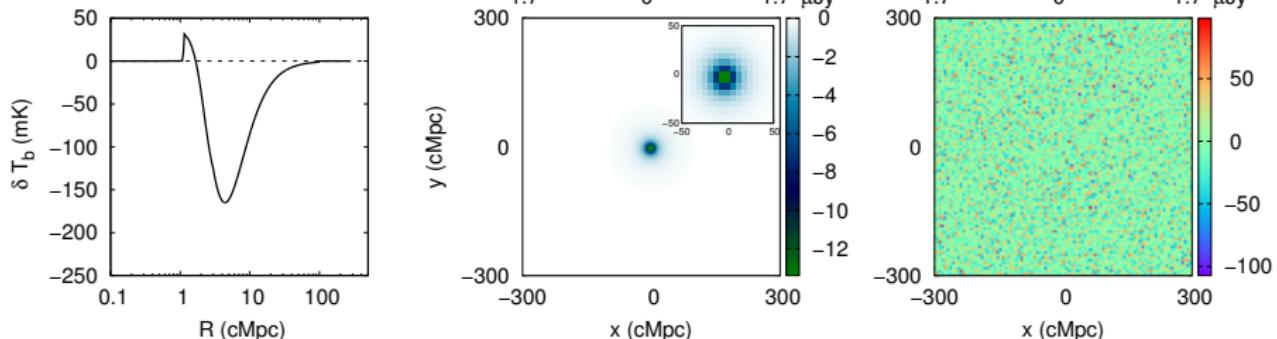
Noise simulation

- The system noise at different baselines and frequency channels are expected to be Gaussian random variables with zero mean.
- rms noise :

$$\sqrt{\langle N^2 \rangle} = \frac{\sqrt{2} k_B T_{\text{sys}}}{A_{\text{eff}} \sqrt{\Delta \nu_c \Delta t_c}} \quad (1)$$

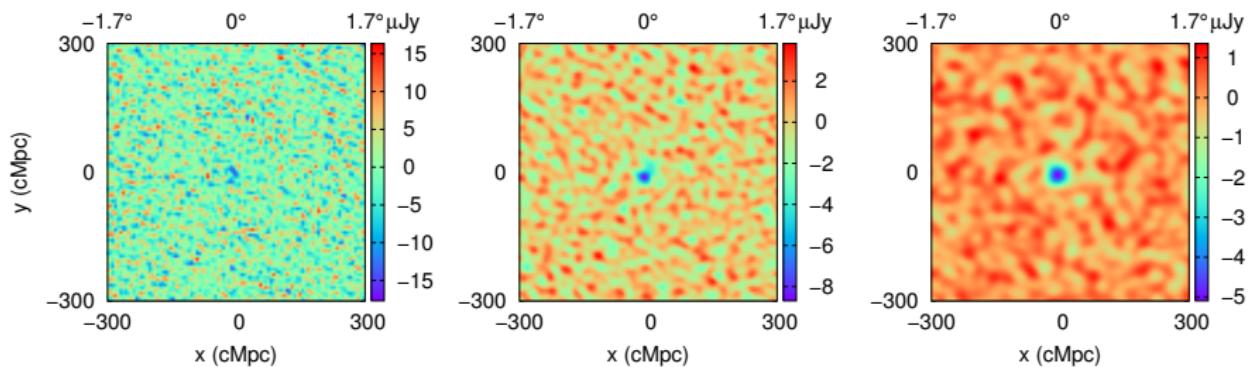
- Pixel noise can be reduced using long observation time.
- Also by a factor $1/\sqrt{n_{\text{Base}}^{i,j}}$, where $n_{\text{Base}}^{i,j}$ is the number of antenna pairs associated with the i,j th pixel.
- Reduction factor : $\sqrt{t_{\text{obs}}/t_{\text{obs}}^{uv}}$, $t_{\text{obs}}^{uv} = 4 \text{ h}$
- Reverse Fourier transform to get noise maps in real space.

Simulated signal and noise



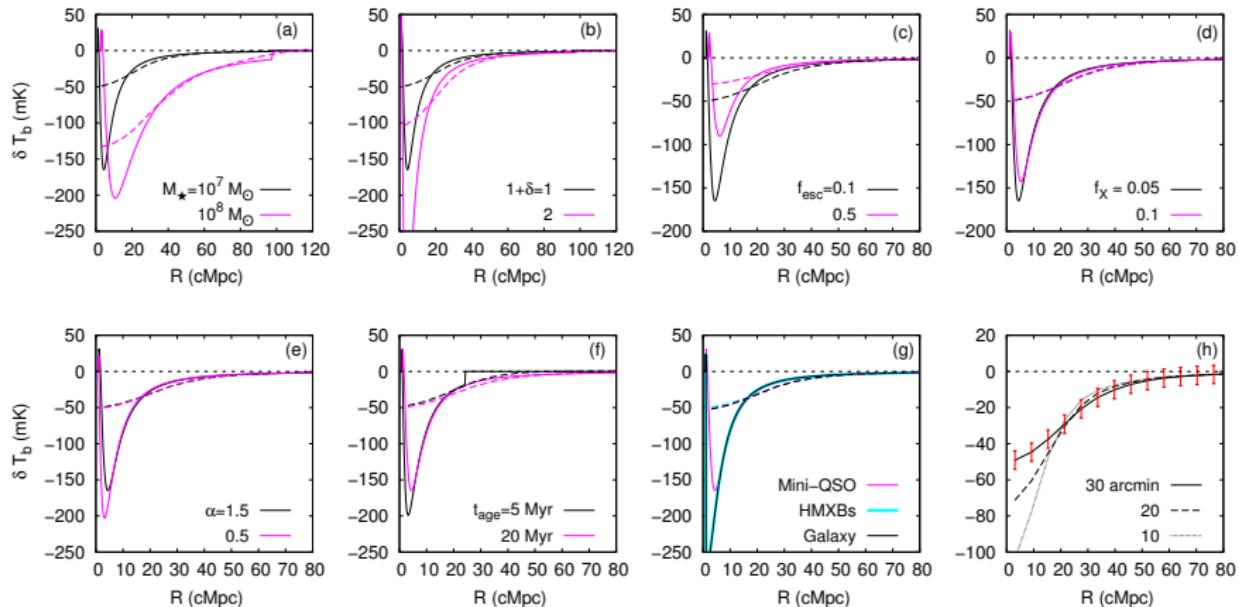
- Fiducial source : $M_\star = 10^7 M_\odot$, Spectral index $\alpha = 1.5$, ratio of X-ray and UV luminosity $f_X = 0.05$, $f_{\text{esc}} = 0.1$, $t_{\text{age}} = 20$ Myr,
- Angular resolution : $2'$
- Noise map correspond to an observation time of 2000 h and frequency resolution of 100 kHz.

Smoothed maps (Foregrounds free)



- Angular resolution : $2'$
- Observational time : 2000 h, frequency resolution : 100 kHz
- Gaussian filter of size $10'$ (left), $20'$ (middle), $30'$ (right).
- SNRs : 4 (left), 7.5 (middle), 11 (right)

Parameter estimation?



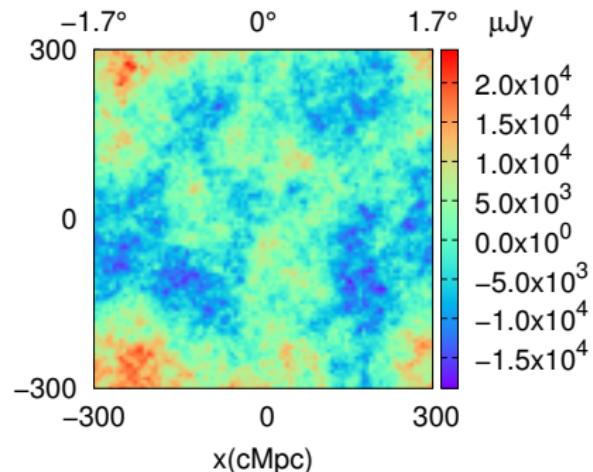
- Fiducial source : Mini-QSO ($M_\star = 10^7 M_\odot$, $\alpha = 1.5$, $f_X = 0.05$, $f_{\text{esc}} = 0.1$, $t_{\text{age}} = 20$ Myr)
- Angular resolution : $2'$, Gaussian filter : $30'$

Signal to noise ratio

Source	M_*	$1 + \delta$	f_{esc}	$1 + z$	Filter	SNR1	SNR2
Mini-QSO	$10^7 M_{\odot}$	1	0.1	16	30'	11.1	9.1
Mini-QSO	$10^6 M_{\odot}$	1	0.1	16	30'	3.6	3.4
Mini-QSO	$10^8 M_{\odot}$	1	0.1	16	30'	25.9	20.2
Mini-QSO	$10^7 M_{\odot}$	2	0.1	16	30'	20.4	17.5
Mini-QSO	$10^7 M_{\odot}$	1	0.5	16	30'	5.2	4
Mini-QSO	$10^7 M_{\odot}$	1	0.1	11	30'	46	38
Mini-QSO	$10^7 M_{\odot}$	1	0.1	16	10'	4.2	4.0
Galaxy	$10^7 M_{\odot}$	1	0.1	16	30'	11.3	9.4
HMXBs	$10^7 M_{\odot}$	1	0.1	16	30'	11.2	9.2

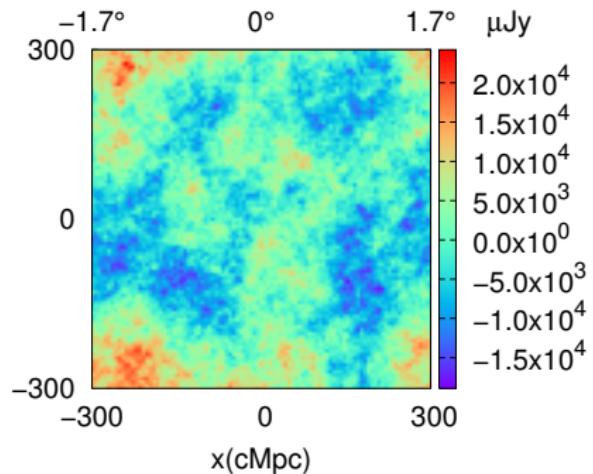
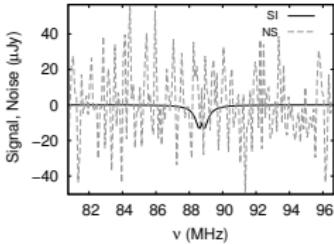
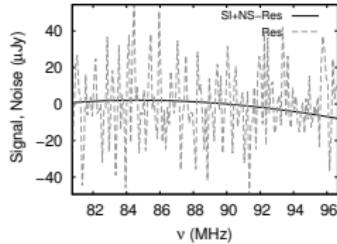
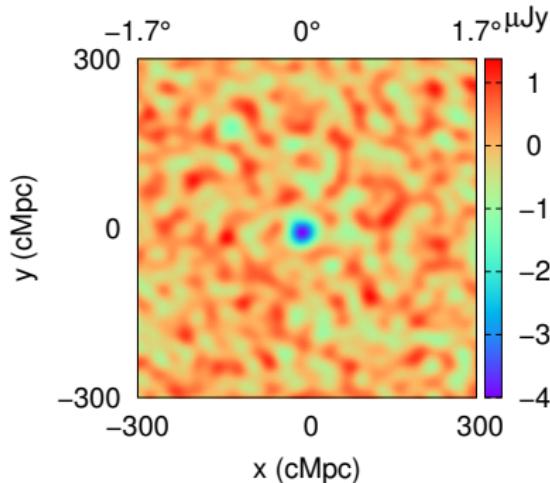
- $t_{\text{obs}} = 2000 \text{ h}$, $\Delta\nu = 100 \text{ kHz}$
- SNR1 : without foregrounds
- SNR2 : with foregrounds

Foregrounds?



- Galactic Synchrotron radiation
- Unresolved extragalactic point sources

Foregrounds?



- Galactic Synchrotron radiation
- Unresolved extragalactic point sources
- $\text{SNR} \sim 9$

Using a filter

- Signal estimator:

$$\langle \hat{E} \rangle = \int d^2 U \int d\nu \ S(\vec{U}, \nu) \ S_f^*(\vec{U}, \nu) \ n_B(\vec{U}, \nu)$$

- Noise :

$$\langle (\Delta \hat{E})^2 \rangle_{\text{NS}} = A_{\text{NS}} \int d^2 U \int d\nu \ |S_f(\vec{U}, \nu)|^2 \ n_B(\vec{U}, \nu)$$

where,

$$A_{\text{NS}} = \langle \hat{N}^2 \rangle \frac{2}{N_{\text{ant}}(N_{\text{ant}} - 1)} \frac{\Delta \nu_c}{B_\nu}$$

- Foregrounds : (Datta et al 2007)

$$\begin{aligned} \langle (\Delta \hat{E})^2 \rangle_{\text{FG}} &= \int d^2 U \int d\nu_1 \int d\nu_2 \left(\frac{2K_B}{c^2} \right)^2 (\nu_1 \nu_2)^2 \\ &\times n_B(\vec{U}, \nu_1) \ n_B(\vec{U}, \nu_2) \ C_{2\pi U}(\nu_1, \nu_2) \\ &\times S_f^*(\vec{U}, \nu_1) S_f(\vec{U}, \nu_2) \end{aligned}$$

Using a filter

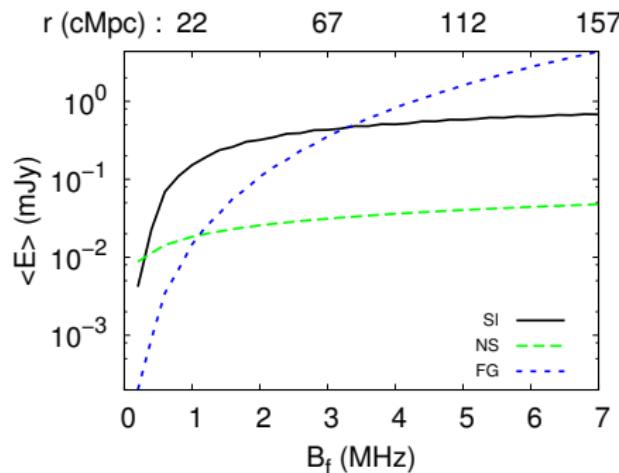
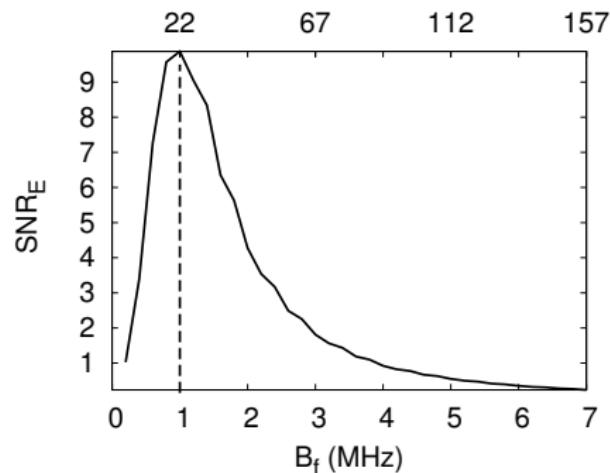
- Filter :

$$S_f(\vec{U}, \nu) = \left(\frac{\nu}{\nu_c} \right)^2 [S_T(\vec{U}, \nu, B_f) - \frac{\Theta(1 - |\nu - \nu_c|/B')}{B'} \\ \times \int_{\nu_c - B'/2}^{\nu_c + B'/2} S_T(\vec{U}, \nu', B_f) d\nu']$$

with $B' = 2B_f$ if B' is less than B_ν , else $B' = B_\nu$.

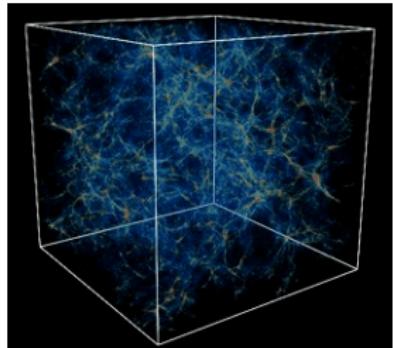
$$S_T(\vec{U}, \nu, B_f) = 0 \text{ if } |\nu - \nu_c| > \frac{B_f}{2} \\ = -1 \text{ if } |\nu - \nu_c| \leq \frac{B_f}{2}.$$

Using a filter



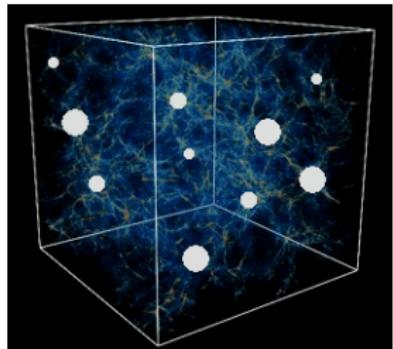
Realistic scenario : Semi-numerical model

- Dark matter Simulation:
 - Cosmological N –body code :
CUBE P^3M (Harnois-Deraps et al.
2012)



Realistic scenario : Semi-numerical model

- Dark matter Simulation:
 - Cosmological N –body code : CUBE P^3M (Harnois-Deraps et al. 2012)
- Identify Dark matter haloes.

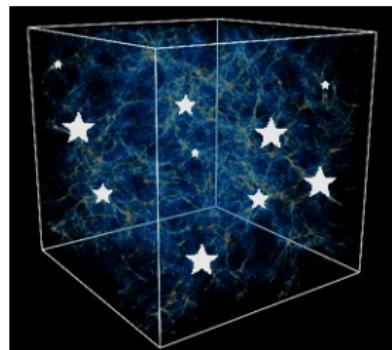


Realistic scenario : Semi-numerical model

- Dark matter Simulation:
 - Cosmological N –body code : CUBE P^3M (Harnois-Deraps et al. 2012)
- Identify Dark matter haloes.
- These haloes are embedded with the sources of radiation.

$$M_* = f_* \left(\frac{\Omega_B}{\Omega_m} \right) M_{\text{halo}}$$

f_* is the stellar fraction of the baryon in the source.



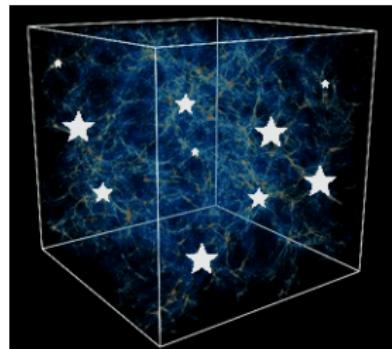
Realistic scenario : Semi-numerical model

- Dark matter Simulation:
 - Cosmological N –body code : CUBE P^3M (Harnois-Deraps et al. 2012)
- Identify Dark matter haloes.
- These haloes are embedded with the sources of radiation.

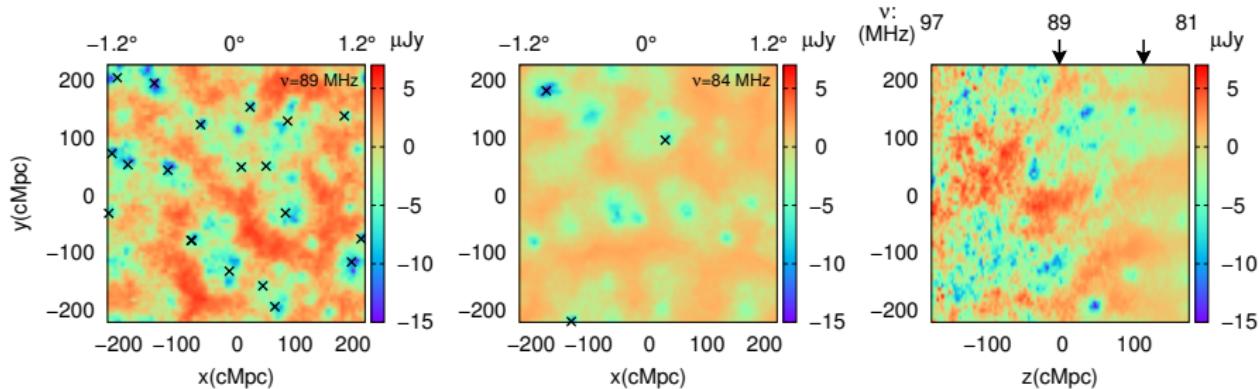
$$M_{\star} = f_{\star} \left(\frac{\Omega_B}{\Omega_m} \right) M_{\text{halo}}$$

f_{\star} is the stellar fraction of the baryon in the source.

- Radial profile of ionization fraction and temperature is derived using a 1D radiative transfer code.

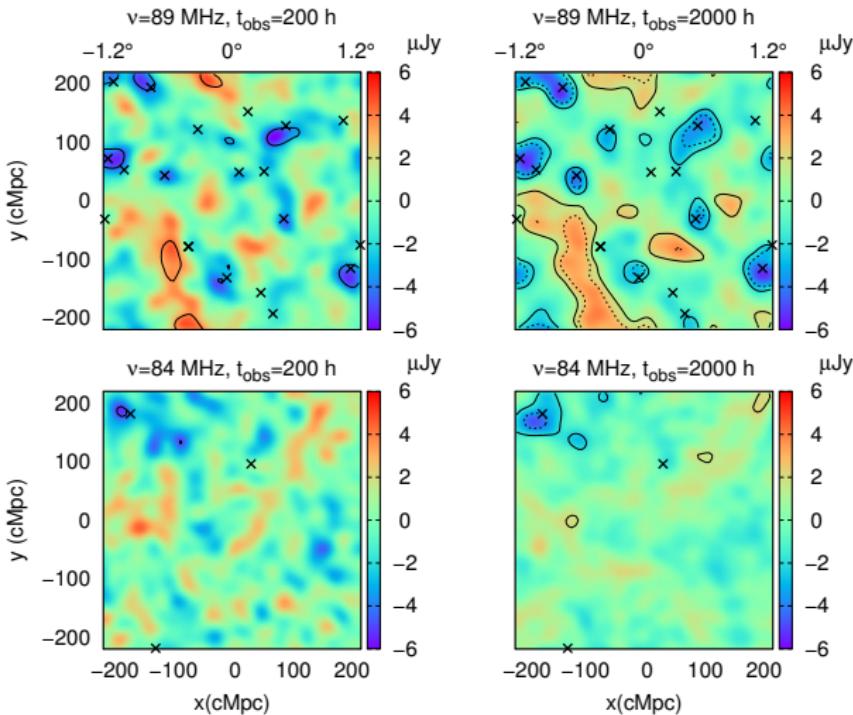


Realistic simulation : Signal maps



- 'x' marks: θ_x, θ_y positions of the sources.
- Simulation :
 - simulation box of size $300 h^{-1} \text{ cMpc}$
 - 2592^3 particles
 - The minimum halo identified using spherical overdensity method is $\sim 4 \times 10^9 M_\odot$.
- Mean is subtracted at each frequency channel.

Realistic maps : Foregrounds subtracted and smoothed



- **SNR** : Upper panels (4.8, 14.2), Lower panels (3.3, 10)
- **One possible observational strategy:** observe multiple fields, detect the signal in low resolution images for short t_{obs} , longer observation on the field where signal is detected, recover the δT_b profiles, parameter estimation.

Conclusions

- After subtracting the foreground sufficiently and suppressing the rms noise by smoothing using a Gaussian filter, the sources are detectable with $\sim 9 - \sigma$ confidence level over 2000 hours of observation with the SKA1-low in images of resolution $2'$.
- Although the 21-cm profiles around the sources get altered because of the Gaussian smoothing, the images can still be used to extract some of the source properties.
- Possible to suppress the foregrounds contributions and detect the signal using suitable filters.
- These studies are useful for making observational strategies.