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Studying the epoch of reionization

70

(MYn') 180 160 140 130 110 9

12 20

7 8 9 10

Figure courtesy Raghunath Ghara

> universe getting ionized by the first stars

» aim is to study the neutral hydrogen fraction xgi(x, z) as it decreases from ~ 1
to~0

» get insights on the nature of the first stars
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Evidence for reionization: quasar absorption spectﬂ}
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Observed flux ~ Unabsorbed flux x exp (—10° x1), where xur = pri/ph.

The fact that there is non-zero flux implies that xg; < 1075
The conclusion holds till z ~ 5.5

NCRA+TIFR

N



. AN
Quasar absorption spectra at z = 6 ﬂ}

NCRA+TIFR

114875251 z=B.42

A Al A A s
03010504 =628~ . | o
J16823+3112 z=8.22
1104914837 z=6.20
I BT . e R S S L A A T DN S
.“'J-l-l..ﬁ;-'r-.iﬁﬁi:é T = = f Senpas, t LNl ) ¥ t 2 = —
“odiay1722 E———
. ~J1306+0356 LA
N gy S g e
J13354+3533
D411 H1217 DR
JDB44+5824 =
= e e o p-

s
J0005—-0006

U1as6rs0a7 =585 .
Y DB3E 10054 z-6.88 T
- 00022550 2=5.80
AN +

JD927+2001 =574
J1044—0135 z=574
L Tom = me Teo

Fan, Carilli & Keating (2006)

F ¥ +

w



. . e . . IIN
Probing reionization using CMBR f}
» CMBR photons scatter off free electrons. Current constraints on reionizatiot

come from
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Probing reionization using CMBR N\
» CMBR photons scatter off free electrons. Current constraints on reionizatiot

come from
— polarization signal at large angular scales
(weak signal, can be confused with polarized foregrounds, e.g., WMAP)
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» CMBR photons scatter off free electrons. Current constraints on reionizatiot

come from
— polarization signal at large angular scales
(weak signal, can be confused with polarized foregrounds, e.g., WMAP)
— dampening of anisotropies at (almost) all angular scales
(effect is degenerate with amplitude of density power spectrum)
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Probing reionization using CMBR f}
» CMBR photons scatter off free electrons. Current constraints on reionizatiot

come from
— polarization signal at large angular scales
(weak signal, can be confused with polarized foregrounds, e.g., WMAP)
— dampening of anisotropies at (almost) all angular scales
(effect is degenerate with amplitude of density power spectrum)
— Planck broke the degeneracy through lensing of the CMBR

» The measured quantity in CMBR observations is the optical depth due to
Thomson scattering off free electrons:

to
Tel = OTC dt ne (1+2)*
tiss
Provided by reionization
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Thomson scattering 7, from CMBR

z[t]
Tel = OTC dt ne (14 2)*

0

Planck Collaboration (2016)
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Spergel et al., 2006

Hinshaw et al., 2013

Planck Coll. XV, 2014
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Thomson scattering 7, from CMBR
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2[t]
3
Tel = OTC dt ne (14 2)
0
Planck Collaboration (2016)
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Challenges

» Confusing statements while interpreting the data:
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instantaneous reionization which is clearly too simplistic!
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» Confusing statements while interpreting the data:

— Quasar absorption spectra imply that “redshift of reionization” is z ~ 6. No, they only
imply that xg; > 10~* at z ~ 6!

— CMBR experiments imply that “redshift of reionization” is z ~ 9. But they assume an
instantaneous reionization which is clearly too simplistic!

— There is a tension between quasar and CMBR data. The data only imply that reionization
is an extended process, starting at z 2 9 and completing at z 2 6.

» Challenge is to build a reionization model that matches all the data sets
simultaneously, i.e.,

— reionization should start early enough to give a sufficiently high 7
— reionization must end before z ~ 6
— the model should produce the right number of photons such that xgr > 10™% at z ~ 6
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Analytical models: basic formalism

Choudhury & Ferrara (2005, 2006)

» Average the radiative transfer equation over large volumes = evolution of
volume filling factor of ionized regions

dQumr  n, Ne
= — — — T
T . QuuCrun P ar(T)

can be extended to account for density-dependent reionization
Miralda-Escide, Haehnelt & Rees (2000)
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Analytical models: basic formalism

Choudhury & Ferrara (2005, 2006)

» Average the radiative transfer equation over large volumes = evolution of
volume filling factor of ionized regions

dQumr  n, Ne
= — — — T
T . QuuCrun P ar(T)

can be extended to account for density-dependent reionization
Miralda-Escide, Haehnelt & Rees (2000)

» Supplemented by temperature and species evolution equations
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Analytical models: sources

Choudhury & Ferrara (2005, 2006)

dQurr ny Ne
1 ” QuuCrin 3 ar(T)

» Assumption: reionization driven primarily by galaxies. Photon production rate:

-G () Q)

Number of ionizing photons in the IGM per baryons
Collapse rate of dark matter haloes

Nion = fesc €« X number of photons per baryons in stars
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Analytical models: sources

Choudhury & Ferrara (2005, 2006)

dQurr ny Ne
1 ” QuuCrin 3 ar(T)

» Assumption: reionization driven primarily by galaxies. Photon production rate:

-G () Q)

Number of ionizing photons in the IGM per baryons
Collapse rate of dark matter haloes
Nion = fesc €« X number of photons per baryons in stars

» Predict observables, e.g., 7,1 (or C;), photoionization rate (or mean transmitted
flux), ...

» full MCMC analysis accounting for Nion(z) and other free parameters



Data constrained models

HI
0.2 0.4 0.6 0.8 1.0

QHII

-2

310

10*10

Mitra, Choudhury & Ferrara (2015)
Constraints based on

» Planckl5 data on 7
» quasar absorption line measurements at z < 6 (either gy or (7o)

» prior on xyr at z ~ 5.5 — 6 based on “dark pixel” fraction
McGreer, Mesinger & D’Odorico (2015)



Data constrained models
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> reionization starts at z ~ 12 — 15
» 50% ionized at z ~ 6 — 10

» large uncertainties at 7 < z < 10



Constraints on reionization history: Planck (2015)g§
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Constraints on reionization history: Planck (2015)g§
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How to constrain reionization at z 2> 77

Galaxy luminosity function: uncertain escape fraction
Quasar absorption spectra (damping wings/near zones)
IGM temperature

Lyman-« emitters (number density, also clustering)

vV vVv.v v .Yy

Future: 21 cm experiments
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How to constrain reionization at z 2> 77

Galaxy luminosity function: uncertain escape fraction
Quasar absorption spectra (damping wings/near zones)
IGM temperature

Lyman-a emitters (number density, also clustering)

vV vVv.v v .Yy

Future: 21 cm experiments
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Lya emitters and reionization
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Fraction of galaxies having Lya emission

“Sharp change”
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in behaviour at z > 6.
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Uncertainties and challenges g}
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» decrease in the space density of Lya emitters at z > 6.
» intrinsic, or damping wing of the surrounding neutral medium?

» modelling challenges: reionization topology, optically thick (super-) Lyman-limit
systems

» use high (effective) dynamic range numerical simulations
Choudhury, Puchwein, Haehnelt & Bolton (2015), Mesinger et al (2015), Kakiichi et al (2015)



Calibrating the reionization simulations
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Matching the data g}
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default model “late” model
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“late” reionization seems to explain the decrease in Ly« visibility
consistent with other studies

Choudhury, Puchwein, Haehnelt & Bolton (2015)



21 cm maps
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21 cm power spectra
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Summary

» Good progress in modelling the reionization, possible to construct models
consistent with available data

» Uncertainties at z 2 7, the Ly« emitters could put some constraints
» Future lies in the 21 cm experiments

» Currently operating telescopes (e.g., LOFAR) may be able to detect the
statistical signal, else have to wait till the SKA1-low
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Summary

» Good progress in modelling the reionization, possible to construct models
consistent with available data

» Uncertainties at z 2 7, the Ly« emitters could put some constraints
» Future lies in the 21 cm experiments

» Currently operating telescopes (e.g., LOFAR) may be able to detect the
statistical signal, else have to wait till the SKA1-low

Thank you



UV luminosity function at z > 6
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Self-consistent reionization from simulations

Assume Q(z) to be given. Choose a z:

mean free path Ay, se—- emissivity Aiopn

N

trial photoionization rate Ny dQ/dt

clumping factor C /

ionization field, self-shielding
invert rHI X Mion >‘1nfp

solve dQ/dt’ = hion/nH — CnH(ym(.



Galaxy luminosity function

3

-1

@(MAE,Z) [mag "Mpc
S

Mitra,

N

N

NCRA+TIFR

—e, =0.0368
z =6.0

—e€, =0.0376
Tz=70

Tz=80

—e¢, =0.0387

—e¢, =0.0390

z =9.0

-22 -20 -18 -16 -14 -12 -22 -20 -18 -16 -14 -12

Choudhury & Ferrara (2015)

-22 -20 -18 -16 -14 -12

M,y

-22 -20 -18

-16 -14 -12

-22 -20 -18 -16 -14 -12



N
N

NCRA+TIFR

Constraints on f..
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f.« at lower redshifts
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» ~ 22 faint quasar candidates detected through multi-wavelength observations
Giallongo et al (2015)

» leads to higher number of ionizing photons contributed by quasars



Constraints on the galaxy contribution
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» what about helium reionization?
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