

Challenges in modelling the cosmic reionization

Tirthankar Roy Choudhury
National Centre for Radio Astrophysics
Tata Institute of Fundamental Research
Pune

Workshop on the Epoch of Reionization
CTS, IIT Kharagpur, India
19 July 2016

Studying the epoch of reionization

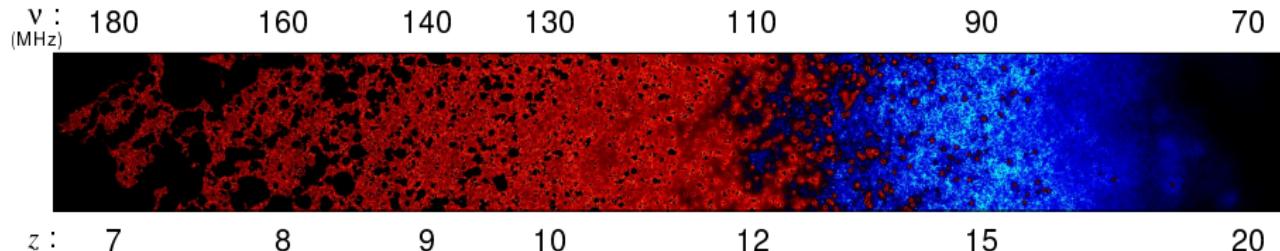


Figure courtesy Raghunath Ghara

- ▶ universe getting ionized by the first stars
- ▶ aim is to study the neutral hydrogen fraction $x_{\text{HI}}(x, z)$ as it decreases from ~ 1 to ~ 0
- ▶ get insights on the nature of the first stars

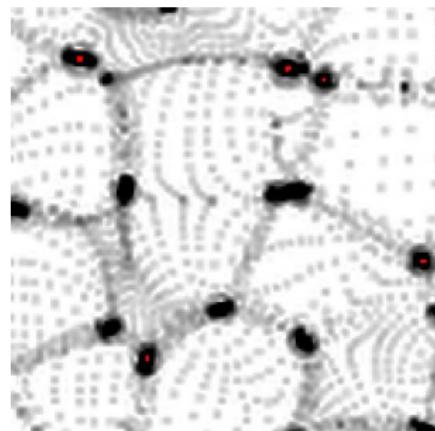
Reionization model ingredients

Formation of (dark matter) haloes:

Analytical: Press-Schechter/Sheth-Tormen formalism:

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

Simulations: DM only N -body codes



Reionization model ingredients

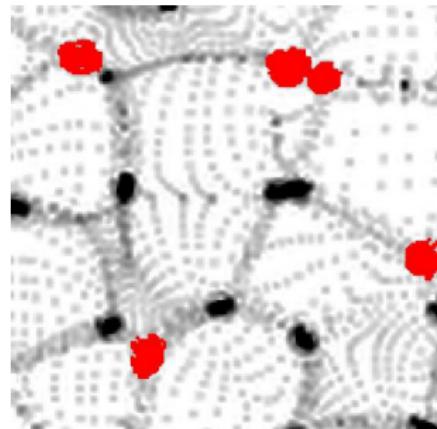
Formation of (dark matter) haloes:

Analytical: Press-Schechter/Sheth-Tormen formalism:

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

Simulations: DM only N -body codes

- ▶ Photon production \dot{n}_γ



Reionization model ingredients

Formation of (dark matter) haloes:

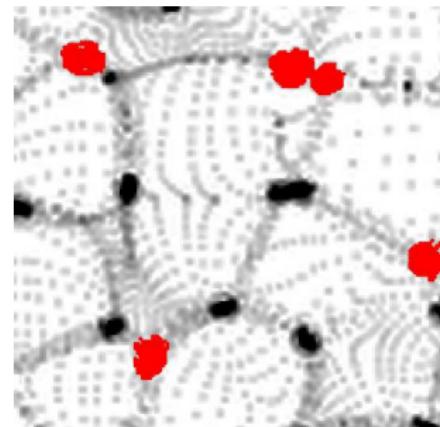
Analytical: Press-Schechter/Sheth-Tormen formalism:

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

Simulations: DM only N -body codes

- ▶ Photon production \dot{n}_γ

- ✗ Galaxy/star formation: cooling, fragmentation, feedback (radiative, mechanical, chemical)



Reionization model ingredients

- ✓ Formation of (dark matter) haloes:

Analytical: Press-Schechter/Sheth-Tormen formalism:

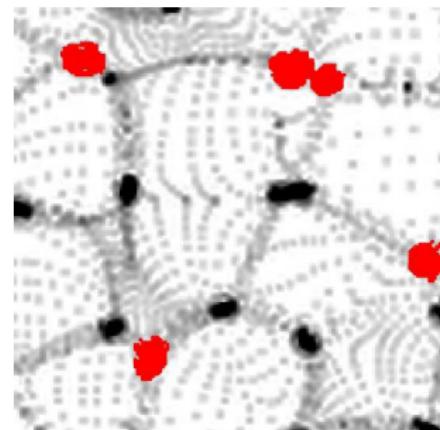
$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

Simulations: DM only N -body codes

- Photon production \dot{n}_γ

✗ Galaxy/star formation: cooling, fragmentation, feedback (radiative, mechanical, chemical)

- ✓ Radiation from stars: population synthesis.



Reionization model ingredients

- ✓ Formation of (dark matter) haloes:

Analytical: Press-Schechter/Sheth-Tormen formalism:

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

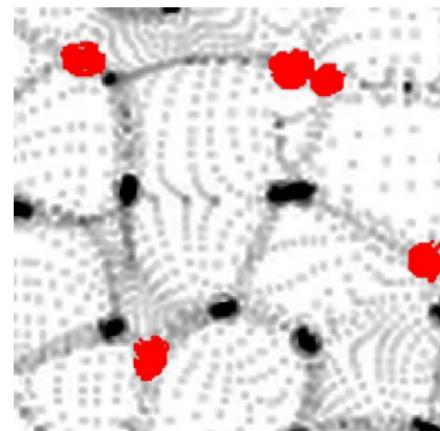
Simulations: DM only N -body codes

- Photon production \dot{n}_γ

✗ Galaxy/star formation: cooling, fragmentation, feedback (radiative, mechanical, chemical)

✓ Radiation from stars: population synthesis.

✗ Escape of photons f_{esc} : neutral hydrogen within the host galaxy



Reionization model ingredients

✓ Formation of (dark matter) haloes:

Analytical: Press-Schechter/Sheth-Tormen formalism:

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

Simulations: DM only N -body codes

► Photon production \dot{n}_γ

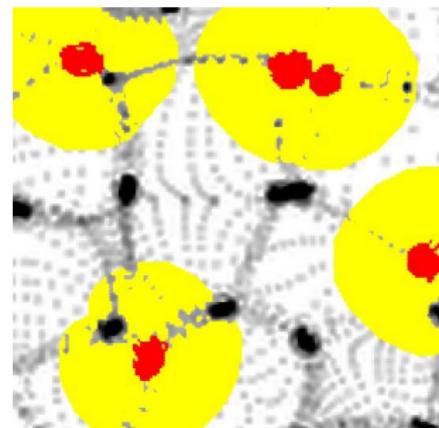
✗ Galaxy/star formation: cooling, fragmentation, feedback (radiative, mechanical, chemical)

✓ Radiation from stars: population synthesis.

✗ Escape of photons f_{esc} : neutral hydrogen within the host galaxy

✗ Radiative transfer in the IGM: evolution of ionization fronts

Simulations, semi-numerical, analytical



Dark matter haloes: analytical

- Analytical formulation, based on *excursion set formalism* and *spherical collapse* gives the mass function of haloes (Press-Schechter)

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

Dark matter haloes: analytical

- Analytical formulation, based on *excursion set formalism* and *spherical collapse* gives the mass function of haloes (Press-Schechter)

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

- Improved calculations include *ellipsoidal collapse* based models (Sheth-Tormen mass function) / fits from *N*-body simulations

Dark matter haloes: analytical

- Analytical formulation, based on *excursion set formalism* and *spherical collapse* gives the mass function of haloes (Press-Schechter)

$$\frac{dn(M, z)}{dM} = \sqrt{\frac{2}{\pi}} \frac{\rho_m}{M} \frac{\delta_c(z)}{\sigma^2(M)} \left| \frac{d\sigma(M)}{dM} \right| e^{-\delta_c^2(z)/2\sigma^2(M)}$$

- Improved calculations include *ellipsoidal collapse* based models (Sheth-Tormen mass function) / fits from *N*-body simulations
- Most reionization calculations depend on the *collapse fraction*

$$f_{\text{coll}}(z) = \frac{1}{\rho_m} \int_{M_{\text{min}}}^{\infty} dM' M' \frac{dn(M', z)}{dM'}$$

Depends on M_{min} , the smallest halo that can produce and send ionized photons into the IGM.

Extensions to the analytical models

- ▶ In the detailed galaxy formation models, one is often interested in halo formation history, e.g., the fraction of M -mass haloes formed at z_{form} that survived till z .

Extensions to the analytical models

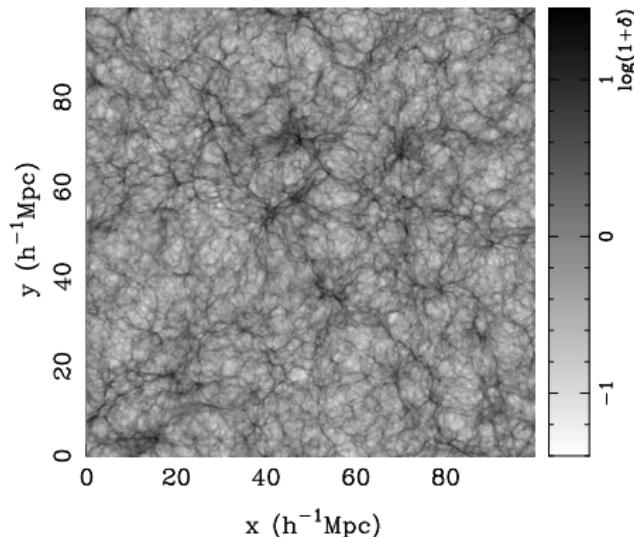
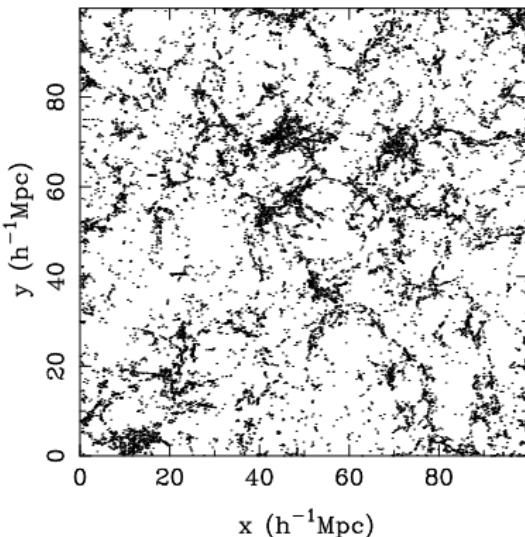
- ▶ In the detailed galaxy formation models, one is often interested in halo formation history, e.g., the fraction of M -mass haloes formed at z_{form} that survived till z .
- ▶ Possible tools: *merger histories* (Lacey & Cole formalism), *formation and destruction rates* (Sasaki formalism), ...

Extensions to the analytical models

- ▶ In the detailed galaxy formation models, one is often interested in halo formation history, e.g., the fraction of M -mass haloes formed at z_{form} that survived till z .
- ▶ Possible tools: *merger histories* (Lacey & Cole formalism), *formation and destruction rates* (Sasaki formalism), ...
- ▶ More recent models include, e.g., *excursion set peak* based formalism

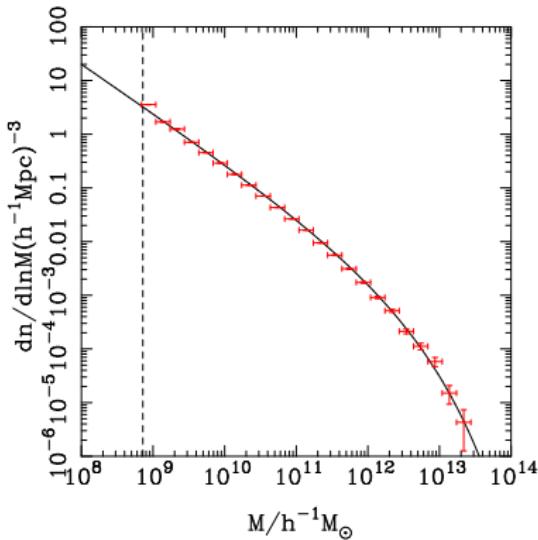
Dark matter haloes: simulations

- ▶ N -body simulations (to generate the density distribution) + Friends-of-Friends / Spherical overdensity algorithm (to identify collapsed objects)



Dark matter haloes: simulations

- ▶ N -body simulations (to generate the density distribution) + Friends-of-Friends / Spherical overdensity algorithm (to identify collapsed objects)
- ▶ Matches well with analytical predictions at high- z



Dynamic range in simulations

- ▶ Reionization simulations require box sizes $\sim 100 - 200$ Mpc
- ▶ Minimum halo mass to be resolved: $\sim 10^8 M_{\odot}$.
- ▶ Particle number $\sim 3000^3$, often beyond the reach of present simulations.
- ▶ Require sub-grid prescription to include small mass haloes.

Sub-grid prescriptions for haloes

- ▶ Given a cell with δ, R , use conditional mass function

Sub-grid prescriptions for haloes

- ▶ Given a cell with δ, R , use conditional mass function
- ▶ Introduce scatter through random sampling

Sub-grid prescriptions for haloes

- ▶ Given a cell with δ, R , use conditional mass function
- ▶ Introduce scatter through random sampling
- ▶ Simple prescriptions may lead to haloes “disappearing” and “appearing” randomly.

Sub-grid prescriptions for haloes

- ▶ Given a cell with δ, R , use conditional mass function
- ▶ Introduce scatter through random sampling
- ▶ Simple prescriptions may lead to haloes “disappearing” and “appearing” randomly.
- ▶ **Question:** How to follow the history of halo formation using sub-grid prescription?

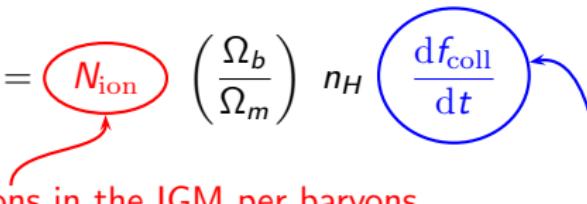
Photon production

- Photon production rate:

$$\dot{n}_\gamma = N_{\text{ion}} \left(\frac{\Omega_b}{\Omega_m} \right) n_H \frac{df_{\text{coll}}}{dt}$$

Number of ionizing photons in the IGM per baryons

Collapse rate of dark matter haloes

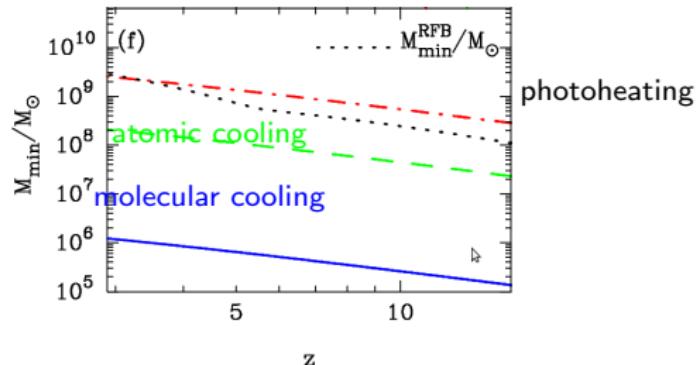


$$N_{\text{ion}} = \epsilon_* f_{\text{esc}} \times \text{number of photons per baryons in stars}$$

- Possible to introduce M, z dependence on N_{ion} , however exact dependence unknown.

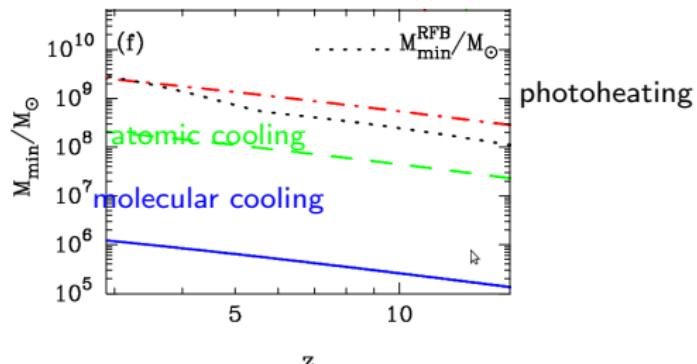
Feedback

- Photoheating (associated with photoionization of H) stops star formation in low mass haloes (Jeans mass) within ionized regions: **radiative feedback**.



Feedback

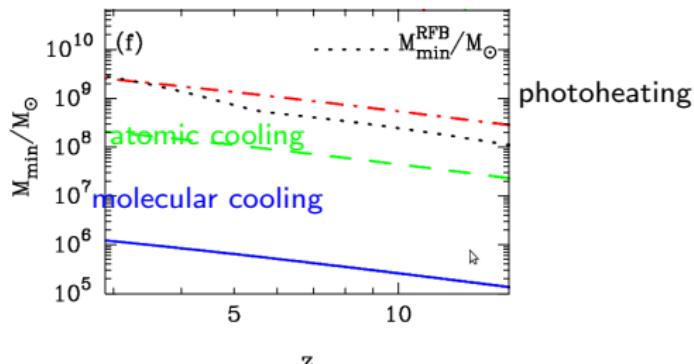
- Photoheating (associated with photoionization of H) stops star formation in low mass haloes (Jeans mass) within ionized regions: **radiative feedback**.



- There could also be **mechanical feedback** whereby energy injection from winds and/or SN affects star formation inside the haloes.

Feedback

- Photoheating (associated with photoionization of H) stops star formation in low mass haloes (Jeans mass) within ionized regions: **radiative feedback**.



- There could also be **mechanical feedback** whereby energy injection from winds and/or SN affects star formation inside the haloes.
- Metal injection by stars change the fragmentation mode \Rightarrow **chemical feedback**.
First stars are zero metallicity (PopIII) stars.
Possibly have different IMF (top-heavy) and spectra (hard).
Extremely efficient sources of ionizing photons. Destroyed by chemical feedback.
PopIII \rightarrow PopII transition poorly understood.

Simple prescriptions for feedback

- ▶ Use $M_{\min} \sim 10^8 M_{\odot}$ (T_{vir} corresponding to atomic cooling) in neutral regions

Simple prescriptions for feedback

- ▶ Use $M_{\min} \sim 10^8 M_{\odot}$ (T_{vir} corresponding to atomic cooling) in neutral regions
- ▶ Use $M_{\min} \sim 10^9 M_{\odot}$ (set by gas temperature) in ionized regions

Simple prescriptions for feedback

- ▶ Use $M_{\min} \sim 10^8 M_{\odot}$ (T_{vir} corresponding to atomic cooling) in neutral regions
- ▶ Use $M_{\min} \sim 10^9 M_{\odot}$ (set by gas temperature) in ionized regions
- ▶ Mechanical feedback: important or not?

Simple prescriptions for feedback

- ▶ Use $M_{\min} \sim 10^8 M_{\odot}$ (T_{vir} corresponding to atomic cooling) in neutral regions
- ▶ Use $M_{\min} \sim 10^9 M_{\odot}$ (set by gas temperature) in ionized regions
- ▶ Mechanical feedback: important or not?
- ▶ Chemical feedback: simple merger tree based methods, cannot deal with “mixing” of metals

Radiative transfer simulations

- ▶ 7-dimensional partial differential equation to determine the intensity $I_\nu(t, \mathbf{x}, \hat{\mathbf{n}})$
⇒ either inaccurate or inefficient

Radiative transfer simulations

- ▶ 7-dimensional partial differential equation to determine the intensity $I_\nu(t, \mathbf{x}, \hat{\mathbf{n}})$
⇒ either inaccurate or inefficient
- ▶ **Question:** Should we develop our own radiative transfer simulation?

Radiative transfer simulations

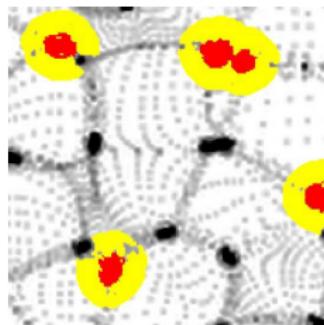
- ▶ 7-dimensional partial differential equation to determine the intensity $I_\nu(t, \mathbf{x}, \hat{\mathbf{n}})$
⇒ either inaccurate or inefficient
- ▶ **Question:** Should we develop our own radiative transfer simulation?
- ▶ Alternatives: semi-analytic or semi-numeric

Semi-analytical models

- Averaging over globally representative volumes (and under certain approximations), the radiative transfer equation reduces to

$$\frac{dQ_{\text{HII}}}{dt} = \frac{\dot{n}_\gamma}{n_H} - Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)$$

Evolution of volume filling factor of ionized regions



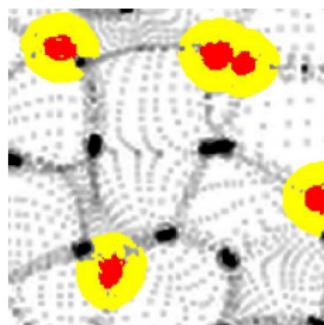
Semi-analytical models

- Averaging over globally representative volumes (and under certain approximations), the radiative transfer equation reduces to

$$\frac{dQ_{\text{HII}}}{dt} = \frac{\dot{n}_\gamma}{n_H} - Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)$$

Evolution of volume filling factor of ionized regions

- Supplemented by temperature and species evolution equations



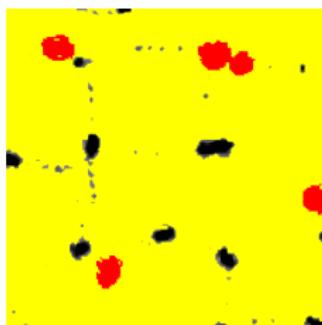
Semi-analytical models

- ▶ Averaging over globally representative volumes (and under certain approximations), the radiative transfer equation reduces to

$$\frac{dQ_{\text{HII}}}{dt} = \frac{\dot{n}_\gamma}{n_H} - Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)$$

Evolution of volume filling factor of ionized regions

- ▶ Supplemented by temperature and species evolution equations
- ▶ Assuming $\dot{n}_\gamma = N_{\text{ion}} n_H \dot{f}_{\text{coll}}$, the equation can be solved with two free parameters \mathcal{C}_{HII} and N_{ion} .



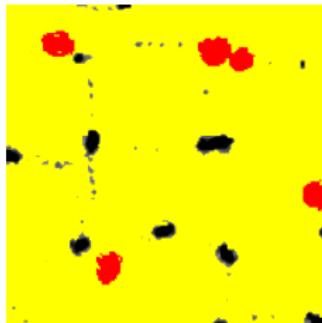
Semi-analytical models

- ▶ Averaging over globally representative volumes (and under certain approximations), the radiative transfer equation reduces to

$$\frac{dQ_{\text{HII}}}{dt} = \frac{\dot{n}_\gamma}{n_H} - Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)$$

Evolution of volume filling factor of ionized regions

- ▶ Supplemented by temperature and species evolution equations
- ▶ Assuming $\dot{n}_\gamma = N_{\text{ion}} n_H \dot{f}_{\text{coll}}$, the equation can be solved with two free parameters \mathcal{C}_{HII} and N_{ion} .
- ▶ What about feedback?



Feedback in semi-analytical models

- Radiative feedback: use a different M_{\min} for ionized regions:

$$\begin{aligned}\frac{dQ_{\text{HII}}}{dt} &= N_{\text{ion}} (1 - Q_{\text{HII}}) \frac{df_{\text{coll}}(M_{\min,\text{neut}})}{dt} \\ &+ N_{\text{ion}} Q_{\text{HII}} \frac{df_{\text{coll}}(M_{\min,\text{ion}})}{dt} \\ &- Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)\end{aligned}$$

Feedback in semi-analytical models

- Radiative feedback: use a different M_{\min} for ionized regions:

$$\begin{aligned}\frac{dQ_{\text{HII}}}{dt} &= N_{\text{ion}} (1 - Q_{\text{HII}}) \frac{df_{\text{coll}}(M_{\min,\text{neut}})}{dt} \\ &+ N_{\text{ion}} Q_{\text{HII}} \frac{df_{\text{coll}}(M_{\min,\text{ion}})}{dt} \\ &- Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)\end{aligned}$$

- What happens after $Q_{\text{HII}} = 1$?

Feedback in semi-analytical models

- Radiative feedback: use a different M_{\min} for ionized regions:

$$\begin{aligned}\frac{dQ_{\text{HII}}}{dt} &= N_{\text{ion}} (1 - Q_{\text{HII}}) \frac{df_{\text{coll}}(M_{\min,\text{neut}})}{dt} \\ &+ N_{\text{ion}} Q_{\text{HII}} \frac{df_{\text{coll}}(M_{\min,\text{ion}})}{dt} \\ &- Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)\end{aligned}$$

- What happens after $Q_{\text{HII}} = 1$?
- $M_{\min,\text{ion}}$ depends on the temperature T of ionized regions

Feedback in semi-analytical models

- Radiative feedback: use a different M_{\min} for ionized regions:

$$\begin{aligned}\frac{dQ_{\text{HII}}}{dt} &= N_{\text{ion}} (1 - Q_{\text{HII}}) \frac{df_{\text{coll}}(M_{\min,\text{neut}})}{dt} \\ &+ N_{\text{ion}} Q_{\text{HII}} \frac{df_{\text{coll}}(M_{\min,\text{ion}})}{dt} \\ &- Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)\end{aligned}$$

- What happens after $Q_{\text{HII}} = 1$?
- $M_{\min,\text{ion}}$ depends on the temperature T of ionized regions
- Can we calculate T ? requires knowledge of photoionization and photoheating rate:

$$\Gamma_{\text{HI}} \propto \dot{n}_\gamma \lambda_{\text{mfp}}$$

Feedback in semi-analytical models

- Radiative feedback: use a different M_{\min} for ionized regions:

$$\begin{aligned}\frac{dQ_{\text{HII}}}{dt} &= N_{\text{ion}} (1 - Q_{\text{HII}}) \frac{df_{\text{coll}}(M_{\min,\text{neut}})}{dt} \\ &+ N_{\text{ion}} Q_{\text{HII}} \frac{df_{\text{coll}}(M_{\min,\text{ion}})}{dt} \\ &- Q_{\text{HII}} \mathcal{C}_{\text{HII}} \frac{n_e}{a^3} \alpha_R(T)\end{aligned}$$

- What happens after $Q_{\text{HII}} = 1$?
- $M_{\min,\text{ion}}$ depends on the temperature T of ionized regions
- Can we calculate T ? requires knowledge of photoionization and photoheating rate:

$$\Gamma_{\text{HI}} \propto \dot{n}_\gamma \lambda_{\text{mfp}}$$

- How do we calculate the mean free path λ_{mfp} ?

Density-dependent reionization

Miralda-Escude, Haehnelt & Rees (2000)

- ▶ Assume all regions with $\Delta < \Delta_{\text{crit}}$ are ionized first (pre-overlap era). Subsequently the radiation fronts penetrate the high density $\Delta > \Delta_{\text{crit}}$ regions (post-overlap era).

Density-dependent reionization

Miralda-Escude, Haehnelt & Rees (2000)

- ▶ Assume all regions with $\Delta < \Delta_{\text{crit}}$ are ionized first (pre-overlap era). Subsequently the radiation fronts penetrate the high density $\Delta > \Delta_{\text{crit}}$ regions (post-overlap era).
- ▶ Post-overlap era

$$\frac{d[F_M(\Delta_{\text{HII}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - R(\Delta_{\text{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

Density-dependent reionization

Miralda-Escude, Haehnelt & Rees (2000)

- ▶ Assume all regions with $\Delta < \Delta_{\text{crit}}$ are ionized first (pre-overlap era). Subsequently the radiation fronts penetrate the high density $\Delta > \Delta_{\text{crit}}$ regions (post-overlap era).
- ▶ Post-overlap era

$$\frac{d[F_M(\Delta_{\text{HII}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - R(\Delta_{\text{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Pre-overlap era

$$\frac{d[Q_{\text{HII}} F_M(\Delta_{\text{HII,crit}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - Q_{\text{HII}} R(\Delta_{\text{HII,crit}}) \frac{n_e}{a^3} \alpha_R(T)$$

Density-dependent reionization

Miralda-Escude, Haehnelt & Rees (2000)

- ▶ Assume all regions with $\Delta < \Delta_{\text{crit}}$ are ionized first (pre-overlap era). Subsequently the radiation fronts penetrate the high density $\Delta > \Delta_{\text{crit}}$ regions (post-overlap era).
- ▶ Post-overlap era

$$\frac{d[F_M(\Delta_{\text{HII}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - R(\Delta_{\text{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Pre-overlap era

$$\frac{d[Q_{\text{HII}} F_M(\Delta_{\text{HII,crit}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - Q_{\text{HII}} R(\Delta_{\text{HII,crit}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Clumping Factor: $C(\Delta_{\text{HII}}) = \int_0^{\Delta_{\text{HII}}} d\Delta \Delta^2 P(\Delta)$

Density-dependent reionization

Miralda-Escude, Haehnelt & Rees (2000)

- ▶ Assume all regions with $\Delta < \Delta_{\text{crit}}$ are ionized first (pre-overlap era). Subsequently the radiation fronts penetrate the high density $\Delta > \Delta_{\text{crit}}$ regions (post-overlap era).
- ▶ Post-overlap era

$$\frac{d[F_M(\Delta_{\text{HII}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - R(\Delta_{\text{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Pre-overlap era

$$\frac{d[Q_{\text{HII}} F_M(\Delta_{\text{HII,crit}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - Q_{\text{HII}} R(\Delta_{\text{HII,crit}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Clumping Factor: $C(\Delta_{\text{HII}}) = \int_0^{\Delta_{\text{HII}}} d\Delta \Delta^2 P(\Delta)$
- ▶ Mean free path: $\lambda_{\text{mfp}} \propto [1 - F_V(\Delta_{\text{HII}})]^{-2/3}$

Density-dependent reionization

Miralda-Escude, Haehnelt & Rees (2000)

- ▶ Assume all regions with $\Delta < \Delta_{\text{crit}}$ are ionized first (pre-overlap era). Subsequently the radiation fronts penetrate the high density $\Delta > \Delta_{\text{crit}}$ regions (post-overlap era).
- ▶ Post-overlap era

$$\frac{d[F_M(\Delta_{\text{HII}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - R(\Delta_{\text{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Pre-overlap era

$$\frac{d[Q_{\text{HII}} F_M(\Delta_{\text{HII,crit}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - Q_{\text{HII}} R(\Delta_{\text{HII,crit}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Clumping Factor: $C(\Delta_{\text{HII}}) = \int_0^{\Delta_{\text{HII}}} d\Delta \Delta^2 P(\Delta)$
- ▶ Mean free path: $\lambda_{\text{mfp}} \propto [1 - F_V(\Delta_{\text{HII}})]^{-2/3}$
- ▶ Requires some assumption about $P(\Delta)$.

Density-dependent reionization

Miralda-Escude, Haehnelt & Rees (2000)

- ▶ Assume all regions with $\Delta < \Delta_{\text{crit}}$ are ionized first (pre-overlap era). Subsequently the radiation fronts penetrate the high density $\Delta > \Delta_{\text{crit}}$ regions (post-overlap era).
- ▶ Post-overlap era

$$\frac{d[F_M(\Delta_{\text{HII}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - R(\Delta_{\text{HII}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Pre-overlap era

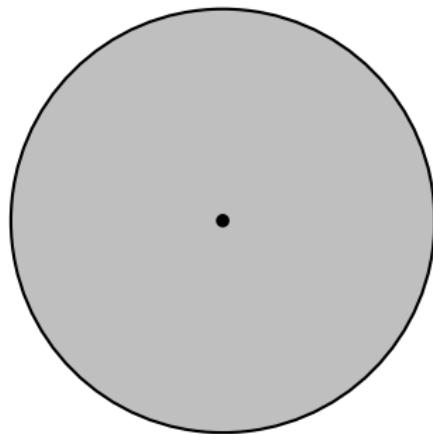
$$\frac{d[Q_{\text{HII}} F_M(\Delta_{\text{HII,crit}})]}{dt} = \frac{\dot{n}_\gamma(z)}{n_H} - Q_{\text{HII}} R(\Delta_{\text{HII,crit}}) \frac{n_e}{a^3} \alpha_R(T)$$

- ▶ Clumping Factor: $C(\Delta_{\text{HII}}) = \int_0^{\Delta_{\text{HII}}} d\Delta \Delta^2 P(\Delta)$
- ▶ Mean free path: $\lambda_{\text{mfp}} \propto [1 - F_V(\Delta_{\text{HII}})]^{-2/3}$
- ▶ Requires some assumption about $P(\Delta)$.
- ▶ Possible to develop detailed semi-analytical models and compare with observations

Choudhury & Ferrara (2005, 2006)

Fluctuations and bubbles

Semi-numerical calculation of ionization fronts (accounts for bubble overlap)



Self-ionization condition:

$$n_{\text{phot}}(R) \geq n_H(R) \implies \zeta f_{\text{coll}}(R) \geq 1$$

Very similar to the halo formation problem

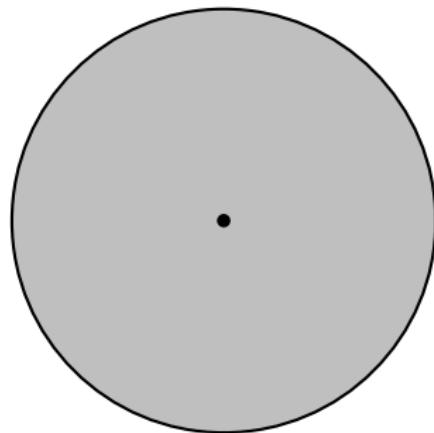
Furlanetto, Zaldarriaga & Hernquist (2004)

Recent improvement: better treatment based on peaks of the density field

Photon conservation issues

Paranjape & Choudhury (2014), Paranjape, Choudhury & Padmanabhan (2016)

Accounting for recombinations



Self-ionization condition:

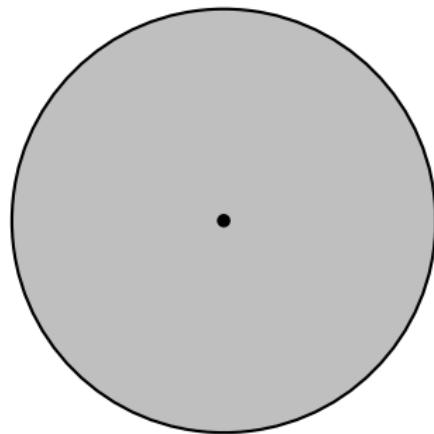
$$\zeta f_{\text{coll}} \geq 1$$

Assume $R < R_{\text{max}} = \lambda_{\text{mfp}}$

A three parameter model for reionization: N_{nion} , M_{min} and λ_{mfp} .

Greig, Mesinger & Pober (2016)

Detailed model for recombinations



Self-ionization condition:

$$\zeta f_{\text{coll}} \geq 1$$

Uniform recombination:

$$\zeta f_{\text{coll}} \geq 1 + \bar{N}_{\text{rec}}$$

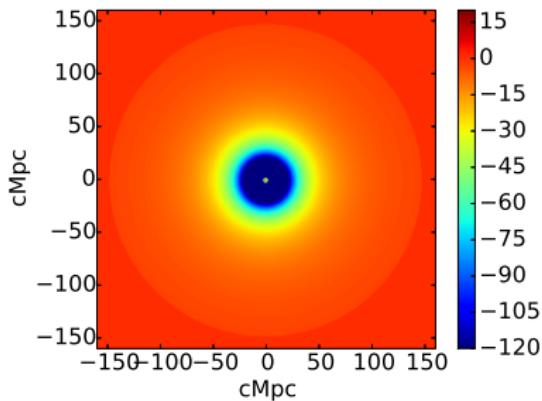
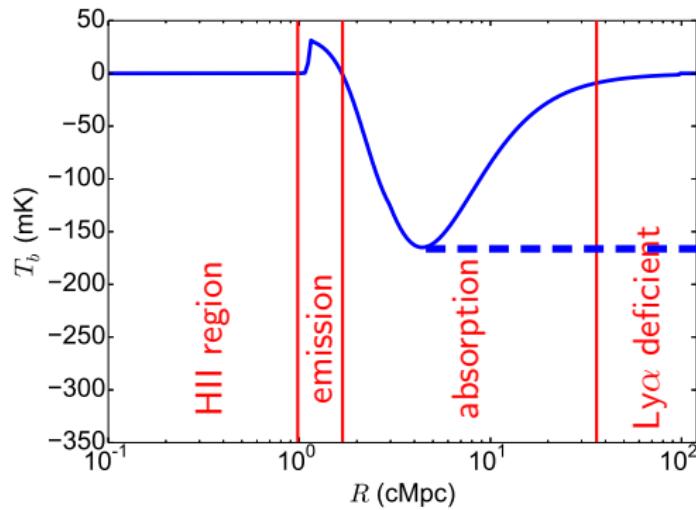
Inhomogeneous recombination:

$$\zeta f_{\text{coll}} \geq 1 + N_{\text{rec}} \Delta^2$$

$$\text{Flux} \leq (n_H L) \times (1 + N_{\text{rec}})$$

Reionization: very early stages

- ▶ Very early stage when sources started to form (cosmic dawn) can be probed by 21 cm signal
- ▶ Require modelling of T_S (in addition to x_{HI}) \Rightarrow X-ray heating and Ly α radiation flux
- ▶ **Question:** Semi-numerical simulations for generating X-ray field and Ly α radiation field?



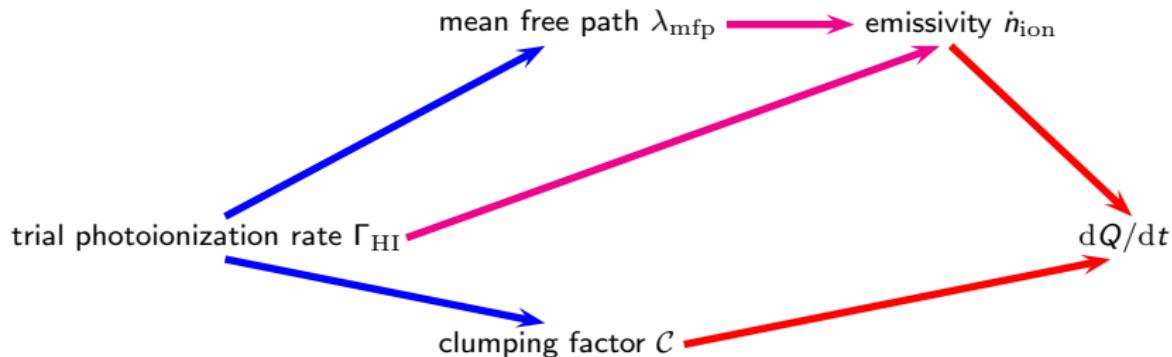
Alvarez, Pen & Chang (2010), Yajima & Li (2014), Ghara, Choudhury & Datta (2015)

Reionization: very late stages

- ▶ Final stages of reionization should match observations at $z \sim 6$ (quasar absorption spectra, Ly α emitters)
- ▶ Require modelling of the IGM physics
- ▶ Account for self-shielding \implies dynamic range problem
- ▶ **Question:** Is it possible to devise faster methods for generating high-dynamic range boxes?

Self-consistent reionization from simulations

Assume $Q(z)$ to be given. Choose a z :



ionization field, self-shielding

invert $\Gamma_{\text{HI}} \propto \dot{n}_{\text{ion}} \lambda_{\text{mfp}}$

solve $dQ/dt = \dot{n}_{\text{ion}}/n_H - C n_H \alpha_{\text{rec}}$

Questions

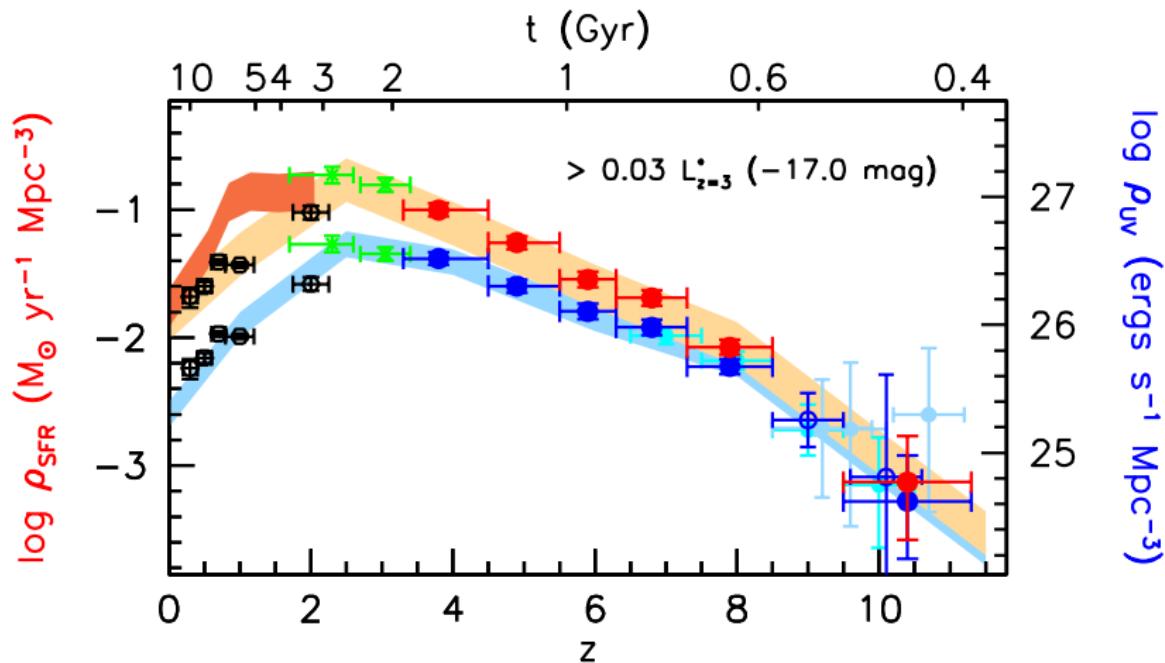
- ▶ How to follow the history of halo formation using sub-grid prescription?
- ▶ Should we develop our own radiative transfer simulation?
- ▶ Semi-numerical simulations for generating X-ray field and Ly α radiation field?
- ▶ Is it possible to devise faster methods for generating high-dynamic range boxes?

Questions

- ▶ How to follow the history of halo formation using sub-grid prescription?
- ▶ Should we develop our own radiative transfer simulation?
- ▶ Semi-numerical simulations for generating X-ray field and Ly α radiation field?
- ▶ Is it possible to devise faster methods for generating high-dynamic range boxes?

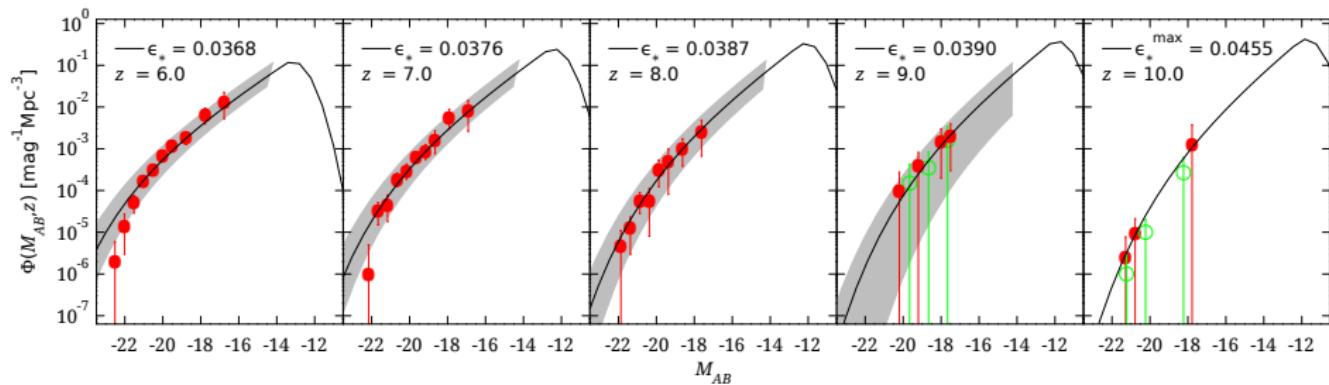
Thank you

UV luminosity function at $z > 6$



Galaxy luminosity function

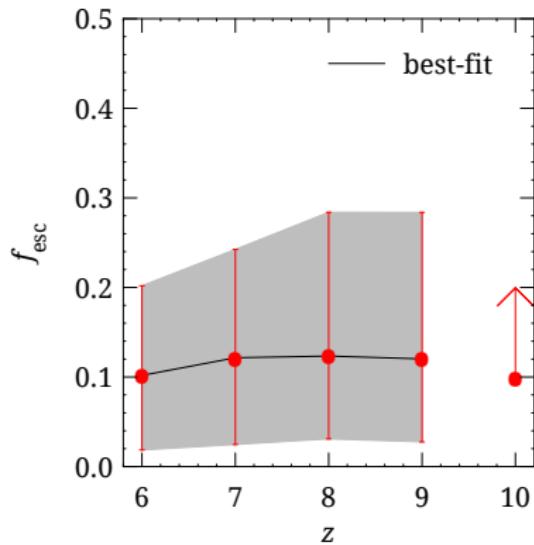
$$N_{\text{ion}} = f_{\text{esc}} \epsilon_* \times \text{number of photons per baryons in stars}$$



Mitra, Choudhury & Ferrara (2015)

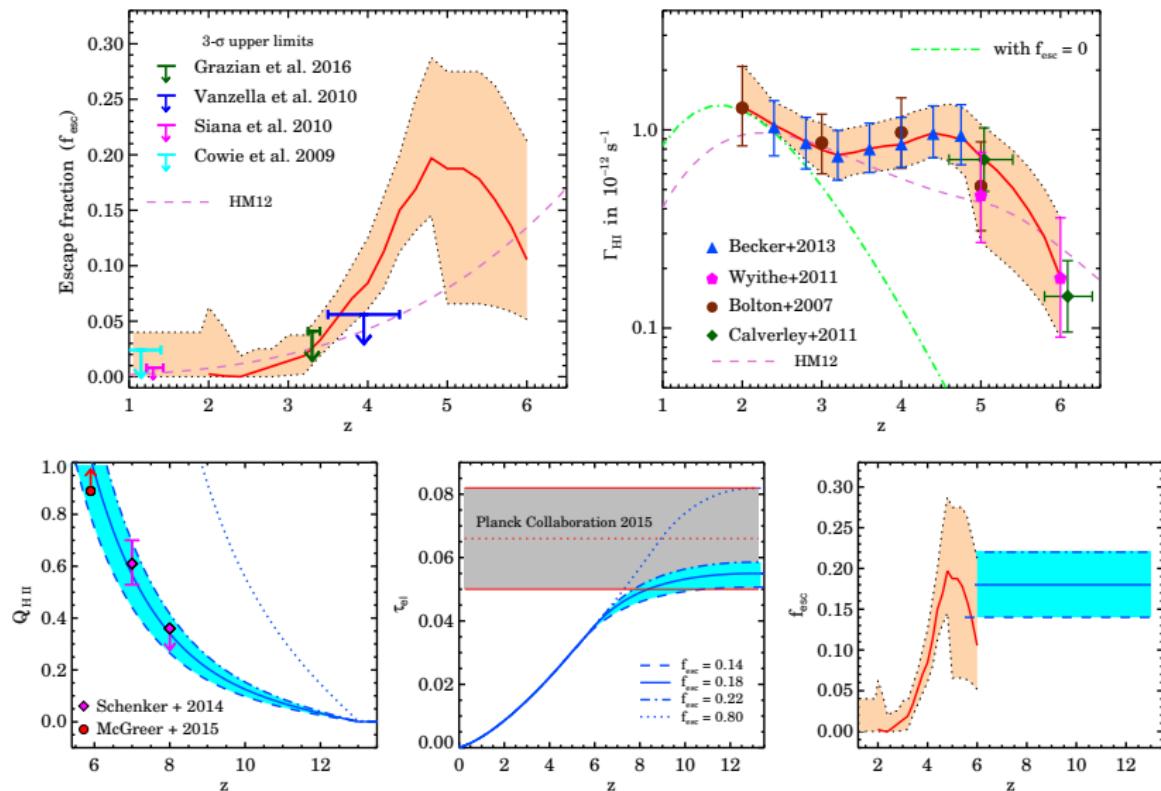
Constraints on f_{esc}

$$N_{\text{ion}} = f_{\text{esc}} \epsilon_* \times \text{number of photons per baryons in stars}$$

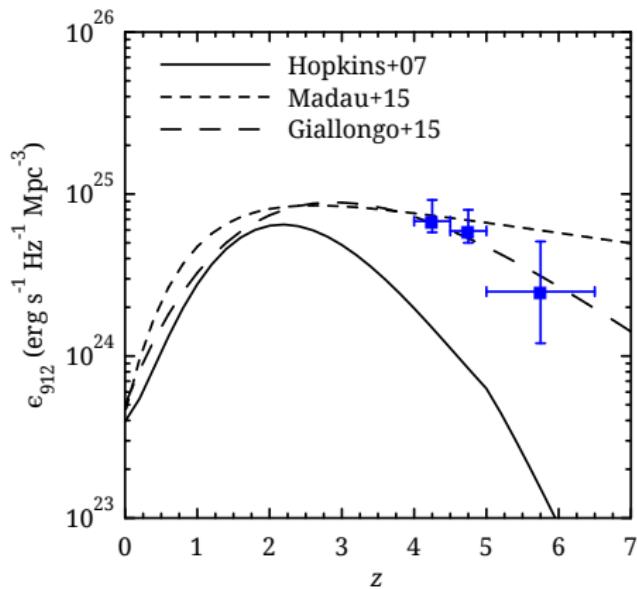


Mitra, Choudhury & Ferrara (2015)

f_{esc} at lower redshifts

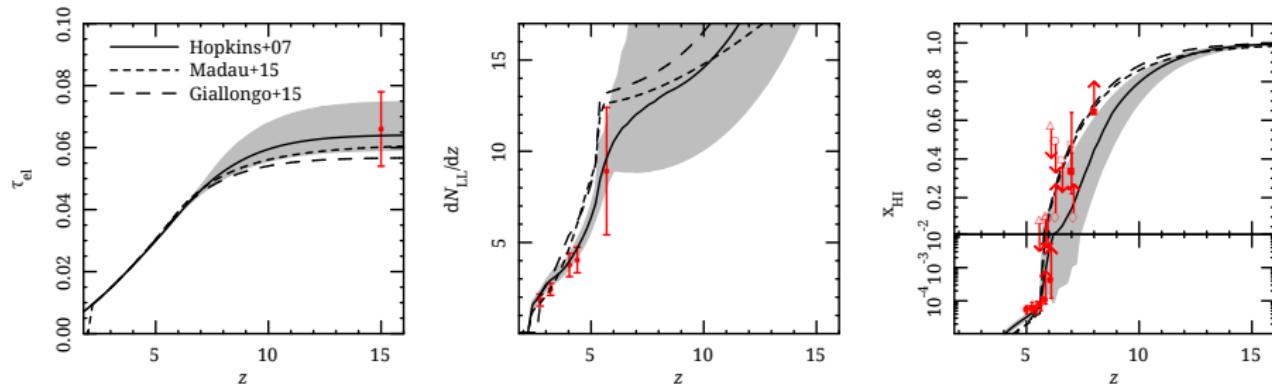


Reionization driven by quasars?



- ▶ ~ 22 faint quasar candidates detected through multi-wavelength observations
[Giallongo et al \(2015\)](#)
- ▶ leads to higher number of ionizing photons contributed by quasars

Constraints on the galaxy contribution



Parameters	best-fit with 2- σ errors		
	H07	MH15	G15
$\epsilon_{\text{II}} \times 10^3$	$6.53^{+0.65}_{-0.98}$	< 0.04	$4.77^{+0.16}_{-0.34}$
f_{esc}	$\sim 0.16^{+0.016}_{-0.024}$	< 0.001	$0.12^{+0.004}_{-0.009}$
τ_{el}	$0.064^{+0.014}_{-0.005}$	$0.061^{+0.002}_{-0.001}$	$0.057^{+0.001}_{-0.001}$

► what about helium reionization?