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Studying the epoch of reionization
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◮ universe getting ionized by the first stars

◮ aim is to study the neutral hydrogen fraction xHI(x, z) as it decreases from ∼ 1
to ∼ 0

◮ get insights on the nature of the first stars
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Reionization model ingredients

√
Formation of (dark matter) haloes:
Analytical: Press-Schechter/Sheth-Tormen formalism:
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Simulations: DM only N-body codes
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◮ Photon production ṅγ
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× Galaxy/star formation: cooling, fragmentation,
feedback (radiative, mechanical, chemical)√
Radiation from stars: population synthesis.

× Escape of photons fesc: neutral hydrogen within
the host galaxy

2



Reionization model ingredients

√
Formation of (dark matter) haloes:
Analytical: Press-Schechter/Sheth-Tormen formalism:

dn(M, z)

dM
=

√

2

π

ρm

M

δc (z)

σ2(M)

∣

∣

∣

∣

dσ(M)

dM

∣

∣

∣

∣

e
−δ2c (z)/2σ

2(M)

Simulations: DM only N-body codes

◮ Photon production ṅγ

× Galaxy/star formation: cooling, fragmentation,
feedback (radiative, mechanical, chemical)√
Radiation from stars: population synthesis.

× Escape of photons fesc: neutral hydrogen within
the host galaxy

× Radiative transfer in the IGM: evolution of
ionization fronts
Simulations, semi-numerical, analytical
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Dark matter haloes: analytical

◮ Analytical formulation, based on excursion set formalism and spherical collapse

gives the mass function of haloes (Press-Schechter)
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Dark matter haloes: analytical

◮ Analytical formulation, based on excursion set formalism and spherical collapse
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◮ Improved calculations include ellipsoidal collapse based models (Sheth-Tormen
mass function) / fits from N-body simulations
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◮ Improved calculations include ellipsoidal collapse based models (Sheth-Tormen
mass function) / fits from N-body simulations

◮ Most reionization calculations depend on the collapse fraction

fcoll(z) =
1

ρm

∫ ∞

Mmin

dM ′ M ′
dn(M ′, z)

dM ′

Depends on Mmin, the smallest halo that can produce and send ionized photons
into the IGM.
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Extensions to the analytical models

◮ In the detailed galaxy formation models, one if often interested in halo formation
history, e.g., the fraction of M-mass haloes formed at zform that survived till z .
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Extensions to the analytical models

◮ In the detailed galaxy formation models, one if often interested in halo formation
history, e.g., the fraction of M-mass haloes formed at zform that survived till z .

◮ Possible tools: merger histories (Lacey & Cole formalism), formation and

destruction rates (Sasaki formalism), . . .

◮ More recent models include, e.g., excursion set peak based formalism
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Dark matter haloes: simulations

◮ N-body simulations (to generate the density distribution) + Friends-of-Friends /
Spherical overdensity algorithm (to identify collapsed objects)
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Dark matter haloes: simulations

◮ N-body simulations (to generate the density distribution) + Friends-of-Friends /
Spherical overdensity algorithm (to identify collapsed objects)

◮ Matches well with analytical predictions at high-z
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Dynamic range in simulations

◮ Reionization simulations require box sizes ∼ 100− 200 Mpc

◮ Minimum halo mass to be resolved: ∼ 108M⊙.

◮ Particle number ∼ 30003, often beyond the reach of present simulations.

◮ Require sub-grid prescription to include small mass haloes.
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Sub-grid prescriptions for haloes

◮ Given a cell with δ,R , use conditional mass function
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Sub-grid prescriptions for haloes

◮ Given a cell with δ,R , use conditional mass function

◮ Introduce scatter through random sampling

◮ Simple prescriptions may lead to haloes “disappearing” and “appearing”
randomly.

◮ Question: How to follow the history of halo formation using sub-grid
prescription?
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Photon production

◮ Photon production rate:

ṅγ = Nion

(

Ωb

Ωm

)

nH
dfcoll

dt

Number of ionizing photons in the IGM per baryons

Collapse rate of dark matter haloes

Nion = ǫ∗ fesc × number of photons per baryons in stars

◮ Possible to introduce M, z dependence on Nion, however exact dependence
unknown.
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Feedback

◮ Photoheating (associated with photoionization of H) stops star formation in low
mass haloes (Jeans mass) within ionized regions: radiative feedback.

atomic cooling

molecular cooling

photoheating
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Feedback

◮ Photoheating (associated with photoionization of H) stops star formation in low
mass haloes (Jeans mass) within ionized regions: radiative feedback.

atomic cooling

molecular cooling

photoheating

◮ There could also be mechanical feedback whereby energy injection from winds
and/or SN affects star formation inside the haloes.

◮ Metal injection by stars change the fragmentation mode =⇒ chemical feedback.
First stars are zero metallicity (PopIII) stars.
Possibly have different IMF (top-heavy) and spectra (hard).
Extremely efficient sources of ionizing photons. Destroyed by chemical feedback.
PopIII −→ PopII transition poorly understood.
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Simple prescriptions for feedback

◮ Use Mmin ∼ 108M⊙ (Tvir corresponding to atomic cooling) in neutral regions
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Simple prescriptions for feedback

◮ Use Mmin ∼ 108M⊙ (Tvir corresponding to atomic cooling) in neutral regions

◮ Use Mmin ∼ 109M⊙ (set by gas temperature) in ionized regions

◮ Mechanical feedback: important or not?

◮ Chemical feedback: simple merger tree based methods, cannot deal with
“mixing” of metals
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Radiative transfer simulations

◮ 7-dimensional partial differential equation to determine the intensity Iν(t, x, n̂)
=⇒ either inaccurate or inefficient
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Radiative transfer simulations

◮ 7-dimensional partial differential equation to determine the intensity Iν(t, x, n̂)
=⇒ either inaccurate or inefficient

◮ Question: Should we develop our own radiative transfer simulation?

◮ Alternatives: semi-analytic or semi-numeric
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Semi-analytical models
◮ Averaging over globally representative volumes (and under certain

approximations), the radiative transfer equation reduces to

dQHII

dt
=

ṅγ

nH
− QHIICHII

ne

a3
αR(T )

Evolution of volume filling factor of ionized regions
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dQHII

dt
=

ṅγ
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Evolution of volume filling factor of ionized regions

◮ Supplemented by temperature and species evolution equations

◮ Assuming ṅγ = NionnH ḟcoll, the equation can be solved with two free parameters
CHII and Nion.

◮ What about feedback?
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Feedback in semi-analytical models

◮ Radiative feedback: use a different Mmin for ionized regions:

dQHII

dt
= Nion (1− QHII)

dfcoll(Mmin,neut)

dt

+ Nion QHII

dfcoll(Mmin,ion)

dt

− QHIICHII

ne

a3
αR(T )
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a3
αR(T )

◮ What happens after QHII = 1?

◮ Mmin,ion depends on the temperature T of ionized regions

◮ Can we calculate T? requires knowledge of photoionization and photoheating
rate:

ΓHI ∝ ṅγλmfp

◮ How do we calculate the mean free path λmfp?
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Density-dependent reionization
Miralda-Escude, Haehnelt & Rees (2000)

◮ Assume all regions with ∆ < ∆crit are ionized first (pre-overlap era).
Subsequently the radiation fronts penetrate the high density ∆ > ∆crit regions
(post-overlap era).
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◮ Clumping Factor: C (∆HII) =
∫ ∆HII

0
d∆ ∆2 P(∆)

◮ Mean free path:λmfp ∝ [1− FV (∆HII)]
−2/3

◮ Requires some assumption about P(∆).
◮ Possible to develop detailed semi-analytical models and compare with

observations
Choudhury & Ferrara (2005, 2006)
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Fluctuations and bubbles

b Self-ionization condition:

nphot(R) ≥ nH(R) =⇒ ζfcoll(R) ≥ 1

Very similar to the halo formation problem

Furlanetto, Zaldarriaga & Hernquist (2004)

Semi-numerical calculation of ionization fronts (accounts for bubble overlap)

Recent improvement: better treatment based on peaks of the density field

Photon conservation issues

Paranjape & Choudhury (2014), Paranjape, Choudhury & Padmanabhan (2016)
15



Accounting for recombinations

Self-ionization condition:

ζfcoll ≥ 1

Assume R < Rmax = λmfp

b

A three parameter model for reionization: Nnion, Mmin and λmfp.

Greig, Mesinger & Pober (2016)
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Detailed model for recombinations

Self-ionization condition:

ζfcoll ≥ 1

Uniform recombination:

ζfcoll ≥ 1 + N̄rec

Inhomogeneous recombination:

ζfcoll ≥ 1 + Nrec∆
2

Flux ≤ (nHL)× (1 + Nrec)

b

17



Reionization: very early stages
◮ Very early stage when sources started to form (cosmic dawn) can be probed by

21 cm signal
◮ Require modelling of TS (in addition to xHI) =⇒ X-ray heating and Lyα

radiation flux
◮ Question: Semi-numerical simulations for generating X-ray field and Lyα

radiation field?
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Reionization: very late stages

◮ Final stages of reionization should match observations at z ∼ 6 (quasar
absorption spectra, Lyα emitters)

◮ Require modelling of the IGM physics

◮ Account for self-shielding =⇒ dynamic range problem

◮ Question: Is it possible to devise faster methods for generating high-dynamic
range boxes?

19



Self-consistent reionization from simulations

Assume Q(z) to be given. Choose a z:

trial photoionization rate ΓHI

mean free path λmfp emissivity ṅion

clumping factor C

dQ/dt

ionization field, self-shielding

invert ΓHI ∝ ṅion λmfp

solve dQ/dt = ṅion/nH − CnHαrec

20



Questions

◮ How to follow the history of halo formation using sub-grid prescription?

◮ Should we develop our own radiative transfer simulation?

◮ Semi-numerical simulations for generating X-ray field and Lyα radiation field?

◮ Is it possible to devise faster methods for generating high-dynamic range boxes?
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Questions

◮ How to follow the history of halo formation using sub-grid prescription?

◮ Should we develop our own radiative transfer simulation?

◮ Semi-numerical simulations for generating X-ray field and Lyα radiation field?

◮ Is it possible to devise faster methods for generating high-dynamic range boxes?

Thank you
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UV luminosity function at z > 6
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Galaxy luminosity function

Nion = fesc ǫ∗ × number of photons per baryons in stars
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Constraints on fesc

Nion = fesc ǫ∗ × number of photons per baryons in stars

best-fit
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fesc at lower redshifts
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Reionization driven by quasars?

Hopkins+07

Madau+15

Giallongo+15
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◮ ∼ 22 faint quasar candidates detected through multi-wavelength observations
Giallongo et al (2015)

◮ leads to higher number of ionizing photons contributed by quasars
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Constraints on the galaxy contribution

Hopkins+07

Madau+15

Giallongo+15

5 10 150
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

z

τ
e
l

5 10 15
5

1
0

1
5

z

d
N

L
L
/d
z

△△

△

○

○

□

□

■

■

♢♢

0
.2

0
.4

0
.6

0
.8

1
.0

x
H

I

••••
•
•

5 10 15

1
0

-4
1
0

-3
1
0

-2

z

Parameters best-fit with 2-σ errors
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ǫII × 103 6.53+0.65
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◮ what about helium reionization?
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