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Studying the epoch of reionization
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> universe getting ionized by the first stars

» aim is to study the neutral hydrogen fraction xgi(x, z) as it decreases from ~ 1
to~0

» get insights on the nature of the first stars



Reionization model ingredients

\/ Formation of (dark matter) haloes:
Analytical: Press-Schechter/Sheth-Tormen formalism:

dn(M,z) 2 pm 6c(2)

aM Va M a?2(M)

dm

dU(M)’ o—02(2)/20%(M)

Simulations: DM only N-body codes
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Reionization model ingredients

\/ Formation of (dark matter) haloes:
Analytical: Press-Schechter/Sheth-Tormen formalism:

dn(M,z) _ |2 pm Oc(2) |do(M)| _s2(z)/20%(m) wvrer
dm ™ M o2(M) dm i
Simulations: DM only N-body codes ] B
. . '
» Photon production n S
: _ _ [ R
X Galaxy/star formation: cooling, fragmentation, -k )
feedback (radiative, mechanical, chemical) T ‘
\/ Radiation from stars: population synthesis. i 4.‘ . L]
X' Escape of photons fys.: neutral hydrogen within e ' "~ i
the host galaxy p .‘,
. v - i

X Radiative transfer in the IGM: evolution of
ionization fronts
Simulations, semi-numerical, analytical



Dark matter haloes: analytical

» Analytical formulation, based on excursion set formalism and spherical collapse
gives the mass function of haloes (Press-Schechter)

dn(M,z) |2 pm 0c(2)
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Dark matter haloes: analytical

» Analytical formulation, based on excursion set formalism and spherical collapse
gives the mass function of haloes (Press-Schechter)

dn(M,z) |2 pm 0c(2)

am T M o2(M) | dM

do(M) ‘ o~ 02(2)/20° (M)

» Improved calculations include ellipsoidal collapse based models (Sheth-Tormen
mass function) / fits from N-body simulations

» Most reionization calculations depend on the collapse fraction

1 e dn(M', z)
f;:o - dM/ M/ )
II(Z) pm ‘/A/’min dM/

Depends on M,,;,,, the smallest halo that can produce and send ionized photons
into the IGM.
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Extensions to the analytical models

» In the detailed galaxy formation models, one if often interested in halo formation
history, e.g., the fraction of M-mass haloes formed at zg,, that survived till z.

> Possible tools: merger histories (Lacey & Cole formalism), formation and
destruction rates (Sasaki formalism), ...

» More recent models include, e.g., excursion set peak based formalism



Dark matter haloes: simulations

» N-body simulations (to generate the density distribution) + Friends-of-Friends /
Spherical overdensity algorithm (to identify collapsed objects)
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Dark matter haloes: simulations

» N-body simulations (to generate the density distribution) + Friends-of-Friends /
Spherical overdensity algorithm (to identify collapsed objects)

» Matches well with analytical predictions at high-z
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Dynamic range in simulations

Reionization simulations require box sizes ~ 100 — 200 Mpc
Minimum halo mass to be resolved: ~ 108M,.

Particle number ~ 30003, often beyond the reach of present simulations.

vV v v .Yy

Require sub-grid prescription to include small mass haloes.
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Sub-grid prescriptions for haloes

» Given a cell with 6, R, use conditional mass function
» Introduce scatter through random sampling

» Simple prescriptions may lead to haloes “disappearing” and “appearing”
randomly.

» Question: How to follow the history of halo formation using sub-grid
prescription?



Photon production

» Photon production rate:

D (2)
7

Number of ionizing photons in the IGM per baryons
Collapse rate of dark matter haloes

Nion = €4 fosc X number of photons per baryons in stars

» Possible to introduce M, z dependence on N,,,, however exact dependence
unknown.



Feedback

» Photoheating (associated with photoionization of H) stops star formation in low
mass haloes (Jeans mass) within ionized regions: radiative feedback.
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Feedback

» Photoheating (associated with photoionization of H) stops star formation in low
mass haloes (Jeans mass) within ionized regions: radiative feedback.
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» There could also be mechanical feedback whereby energy injection from winds
and/or SN affects star formation inside the haloes.



Feedback

» Photoheating (associated with photoionization of H) stops star formation in low
mass haloes (Jeans mass) within ionized regions: radiative feedback.
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» There could also be mechanical feedback whereby energy injection from winds
and/or SN affects star formation inside the haloes.

» Metal injection by stars change the fragmentation mode = chemical feedback.
First stars are zero metallicity (Poplll) stars.
Possibly have different IMF (top-heavy) and spectra (hard).
Extremely efficient sources of ionizing photons. Destroyed by chemical feedback.
Poplll — Popll transition poorly understood.
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Simple prescriptions for feedback

Use Myin ~ 108 M, (T corresponding to atomic cooling) in neutral regions
Use Mpyin ~ 109/\/I@ (set by gas temperature) in ionized regions
Mechanical feedback: important or not?

vV v v Y

Chemical feedback: simple merger tree based methods, cannot deal with
“mixing” of metals
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Radiative transfer simulations

» 7-dimensional partial differential equation to determine the intensity /,(t, x, i)
= either inaccurate or inefficient

» Question: Should we develop our own radiative transfer simulation?

» Alternatives: semi-analytic or semi-numeric



Semi-analytical models

» Averaging over globally representative volumes (and under certain
approximations), the radiative transfer equation reduces to
dQumr _ n, n

T o Qe Hna3OéR( )

Evolution of volume filling factor of ionized regions
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Semi-analytical models

» Averaging over globally representative volumes (and under certain
approximations), the radiative transfer equation reduces to

dQun _ n, ne
& QHHCHITEOCR(T)

Evolution of volume filling factor of ionized regions
» Supplemented by temperature and species evolution equations

» Assuming n, = ionancou, the equation can be solved with two free parameters
Cram and Nioy.
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Semi-analytical models

» Averaging over globally representative volumes (and under certain
approximations), the radiative transfer equation reduces to

dQumr _ n, n

T o Qe Hna3OéR( )

Evolution of volume filling factor of ionized regions
» Supplemented by temperature and species evolution equations

» Assuming n, = Nionancou, the equation can be solved with two free parameters
Cram and Nioy.

» What about feedback?
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Feedback in semi-analytical models

» Radiative feedback: use a different Myy,;, for ionized regions:
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Feedback in semi-analytical models

v

Radiative feedback: use a different My, for ionized regions:

dQHII dﬁ:oll(Mmin neut)
Nion 1- :
1 (1 — Qumn) T
dfco Mmin ion
+  Nion QHHM

dt

n
- QHHCHH;;&R(T)

v

What happens after Qur = 17

v

Mimin,ion depends on the temperature T of ionized regions

v

Can we calculate T? requires knowledge of photoionization and photoheating
rate:

I'HI 0.8 I.’LY )\mfp

v

How do we calculate the mean free path Apyg,?
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Density-dependent reionization
Miralda-Escude, Haehnelt & Rees (2000)
» Assume all regions with A < A are ionized first (pre-overlap era).

Subsequently the radiation fronts penetrate the high density A > A regions
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» Post-overlap era

d[FM(AHH)] h,y(z) Ne
= — R(A — T
dt Ny ( HH)a3aR( )
» Pre-overlap era
d[Qur Fm(Awir erit)]

_m(z) e
i = o QHIIR(AHII,cm)a3OéR(T)

» Clumping Factor: C(Aum) = Au A A2 P(A
0



Density-dependent reionization
Miralda-Escude, Haehnelt & Rees (2000)
» Assume all regions with A < A are ionized first (pre-overlap era).

Subsequently the radiation fronts penetrate the high density A > A regions
(post-overlap era).

» Post-overlap era
d[Fm(Auu)] _ my(2) Ne
= — R(Aumn)— T
dt ny ( HH)a3aR( )
» Pre-overlap era
A@un Pl Brmrere)] _ A(2) QuuR (Dt eric) = ar(T)

dt ny a3

v

Clumping Factor: C(Anr) = fOAHH dA A% P(D)
Mean free path:Amep o< [1 — Fy(Amm)] 23

v



Density-dependent reionization
Miralda-Escude, Haehnelt & Rees (2000)
» Assume all regions with A < A are ionized first (pre-overlap era).

Subsequently the radiation fronts penetrate the high density A > A regions
(post-overlap era).

» Post-overlap era
d[Fm(Auu)] _ my(2) Ne
= — R(Aumn)— T
dt ny ( HH)a3aR( )
» Pre-overlap era
A@un Pl Brmrere)] _ A(2) QuuR (Dt eric) = ar(T)

dt ny a3

v

Clumping Factor: C(Anr) = fOAHH dA A% P(D)
Mean free path:Amep o< [1 — Fy(Amm)] 23
Requires some assumption about P(A).

vy



Density-dependent reionization
Miralda-Escude, Haehnelt & Rees (2000)

» Assume all regions with A < A are ionized first (pre-overlap era).
Subsequently the radiation fronts penetrate the high density A > A regions
(post-overlap era).

» Post-overlap era

d[Fm(Auu)] _ my(2) Ne
- — R(Aun) " ar(T
dt ny ( HH)83 aR( )
» Pre-overlap era
d[QuuFm(Aumeit)] _ my(2) QuiR(An 't)ne ar(T)

dt ny a3

» Clumping Factor: C(Aun) = fOAHH dA A% P(D)
» Mean free path: Ay, o [1 — FV(AHH)]72/3
» Requires some assumption about P(A).

» Possible to develop detailed semi-analytical models and compare with
observations
Choudhury & Ferrara (2005, 2006)



Fluctuations and bubbles

Semi-numerical calculation of ionization fronts (accounts for bubble overlap)

Self-ionization condition:
Nphot(R) > np(R) = (feon(R) > 1

Very similar to the halo formation problem
Furlanetto, Zaldarriaga & Hernquist (2004)

Recent improvement: better treatment based on peaks of the density field
Photon conservation issues
Paranjape & Choudhury (2014), Paranjape, Choudhury & Padmanabhan (2016)



Accounting for recombinations

Self-ionization condition:
Cfcoll 2 1
Assume R < Rpax = Amfp

A three parameter model for reionization: Nyion, Mmin and Apmgp.
Greig, Mesinger & Pober (2016)



Detailed model for recombinations

Self-ionization condition:

Cfeon =1

Uniform recombination:

Chooll > 1+ Nyee
Inhomogeneous recombination:
Cfoon > 1+ Npec A?

Flux < (ngL) x (1 + Nyee)



Reionization: very early stages

» Very early stage when sources started to form (cosmic dawn) can be probed by
21 cm signal

» Require modelling of Ts (in addition to xp1) = X-ray heating and Ly«
radiation flux

» Question: Semi-numerical simulations for generating X-ray field and Ly«
radiation field?
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Reionization: very late stages

» Final stages of reionization should match observations at z ~ 6 (quasar
absorption spectra, Ly« emitters)

» Require modelling of the IGM physics
» Account for self-shielding = dynamic range problem

» Question: Is it possible to devise faster methods for generating high-dynamic
range boxes?



Self-consistent reionization from simulations

Assume Q(z) to be given. Choose a z:

mean free path Ay, se—- emissivity iopn

N

trial photoionization rate Ny dQ/dt

clumping factor C /

ionization field, self-shielding

invert rHI o< Njon >‘n1fp

solve dQ/dt = fion /Ny — Cnpirec



Questions

How to follow the history of halo formation using sub-grid prescription?
Should we develop our own radiative transfer simulation?
Semi-numerical simulations for generating X-ray field and Ly« radiation field?

vV v vy

Is it possible to devise faster methods for generating high-dynamic range boxes?



Questions

How to follow the history of halo formation using sub-grid prescription?
Should we develop our own radiative transfer simulation?
Semi-numerical simulations for generating X-ray field and Ly« radiation field?

vV v vy

Is it possible to devise faster methods for generating high-dynamic range boxes?

Thank you



UV luminosity function at z > 6
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Galaxy luminosity function

Nion = Tesc
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Mitra, Choudhury & Ferrara (2015)



Constraints on f..

Nion = fesc €+ X number of photons per baryons in stars
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Mitra, Choudhury & Ferrara (2015)



f.« at lower redshifts
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Reionization driven by quasars?
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» ~ 22 faint quasar candidates detected through multi-wavelength observations
Giallongo et al (2015)

» leads to higher number of ionizing photons contributed by quasars



Constraints on the galaxy contribution
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» what about helium reionization?
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