

Imprints of recombination history of the Universe on 21 cm signal from neutral hydrogen during the Dark Ages

Dhruba Dutta Chowdhury
in
collaboration with
Kanan Kumar Datta

Department of Physics, Presidency University

Epoch of Reionization Worshop, IIT Kharagpur

18th July, 2016

Evolution of Kinetic Gas Temperature

Theoretical Framework

- First Law of Thermodynamics

$$dQ = \frac{3}{2} k_B dT_g - k_B T_g d\log \rho_b$$

- Heating rate per particle due to Compton scattering between CMB photons and residual electrons ¹

$$\frac{dQ}{dt} = \frac{4\sigma_T \rho_\gamma n_e}{3m_e c n_{tot}} (T_\gamma - T_g)$$

- Gas Temperature Evolution Equation²

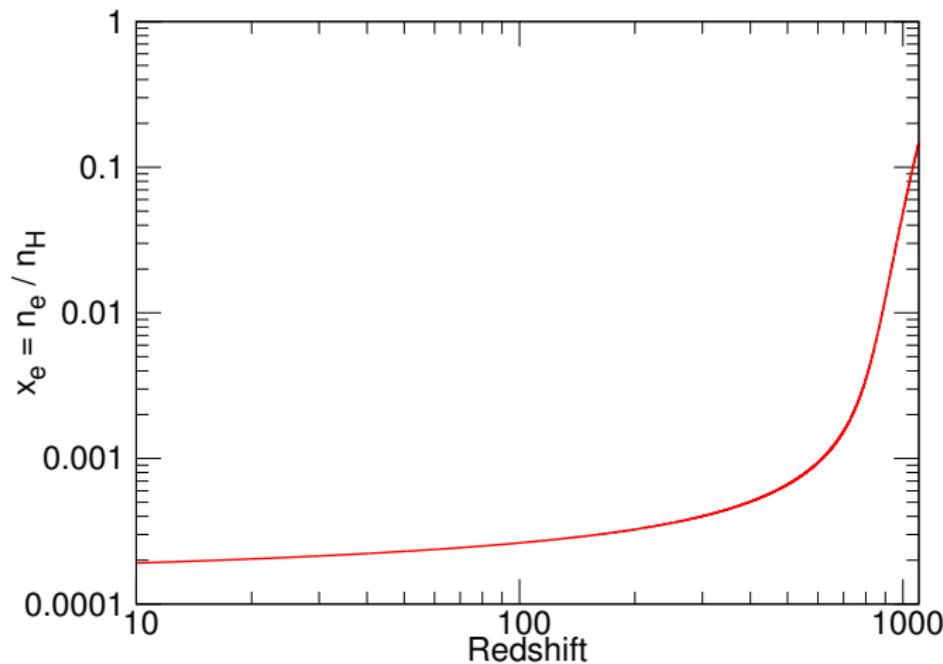
$$\frac{\partial T_g}{\partial z} = \frac{2T_g}{3\rho_b} \frac{\partial \rho_b}{\partial z} - \left(\frac{x_e}{1 + f_{He} + x_e} \right) \frac{8\sigma_T \rho_\gamma^0}{3m_e c H_0 \Omega_m^{1/2}} (1+z)^{3/2} (T_\gamma - T_g)$$

¹e.g., Pebbles (1993)

²Seager et al. (1999)

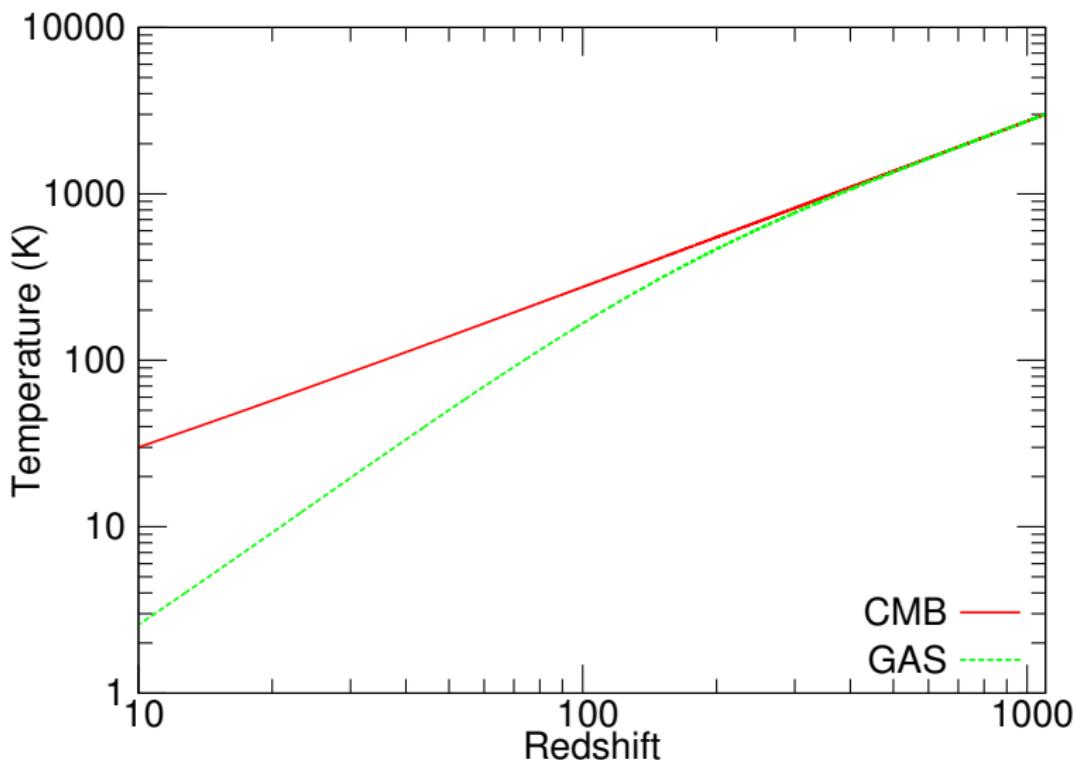
Variation of Ionization fraction with Redshift

From RECFEST code (Seager et al. 1999, 2000)



Multilevel calculations to compute ionization fraction of Hydrogen and Helium I

Mean Gas Temperature from RECFAST



- Model 1: Bharadwaj & Ali (2004)

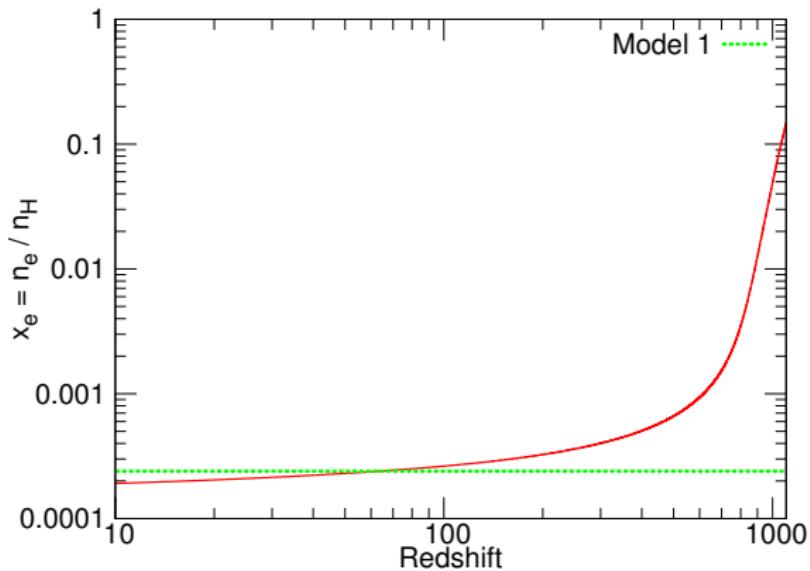
$$\frac{\partial T_g}{\partial z} = \frac{2 T_g}{3 \rho_b} \frac{\partial \rho_b}{\partial z} - \frac{9.88 \times 10^{-8}}{\Omega_b h^2} (1+z)^{3/2} (T_\gamma - T_g)$$

- Model 1: Bharadwaj & Ali (2004)

$$\frac{\partial T_g}{\partial z} = \frac{2 T_g}{3 \rho_b} \frac{\partial \rho_b}{\partial z} - \frac{9.88 \times 10^{-8}}{\Omega_b h^2} (1+z)^{3/2} (T_\gamma - T_g)$$

$$x_e = 2.40 \times 10^{-4}$$

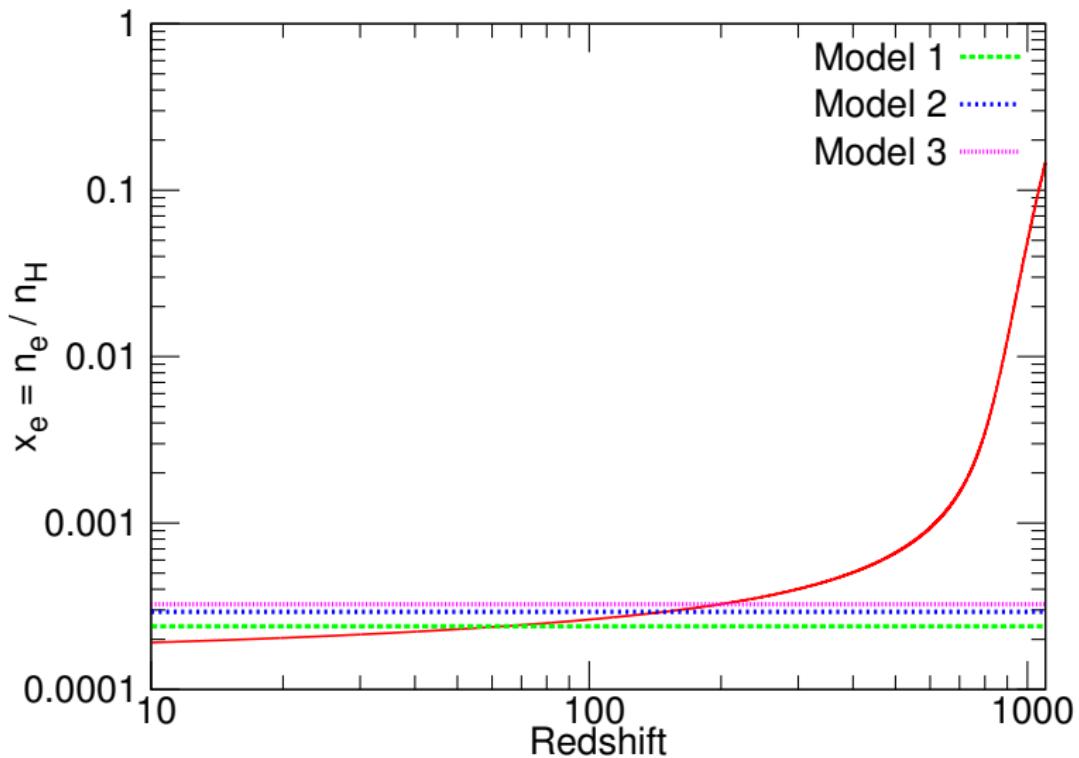
Fixed x_e models



The ionization fraction at $z \sim 70$ is fixed throughout in Bharadwaj & Ali (2004)

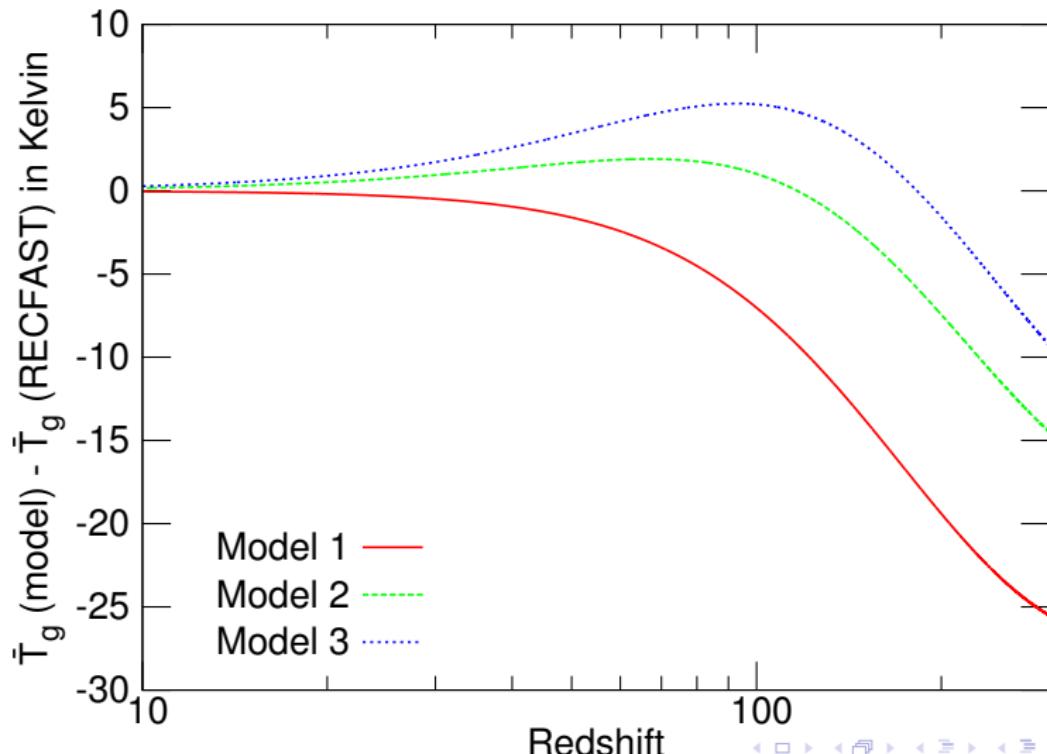
- **Model 1:** x_e fixed at 2.40×10^{-4} corresponding to $z \sim 70$ in RECFAST (Bharadwaj & Ali 2004)
- **Model 2:** x_e fixed at 2.93×10^{-4} corresponding to $z = 150$ in RECFAST
- **Model 3:** x_e fixed at 3.25×10^{-4} corresponding to $z = 200$ in RECFAST (suggested in Furlanetto et al. 2006)

Fixed x_e models



Mean Gas Temperature in fixed x_e models

Comparison with respect with RECFAST



Other Simple Models

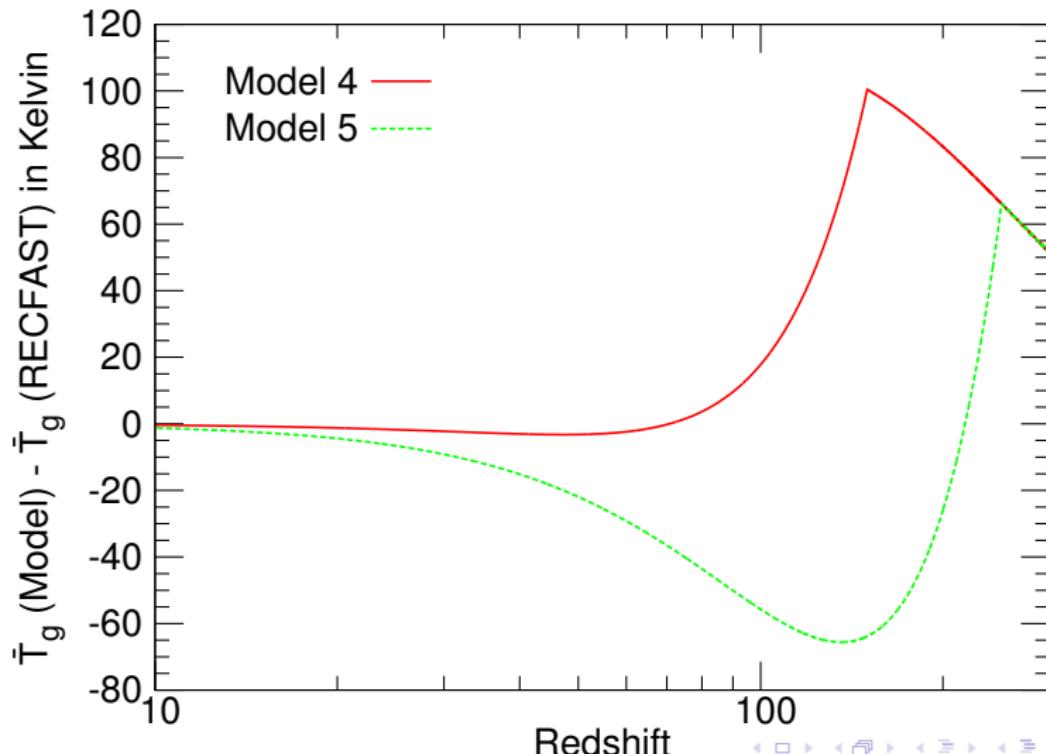
- Gas fully coupled with CMB upto $z = z_{dec}$ and falls adiabatically below z_{dec} .
- $x_e = 0.0$ for $z \leq z_{dec}$

$$\overline{T}_g = \overline{T}_{cmb} \quad z > z_{dec}$$
$$\overline{T}_g = \frac{2.73(1+z)^2}{(1+z_{dec})} \quad z \leq z_{dec}$$

- **Model 4:** $z_{dec} = 150$ (Ghara et al. 2015)
- **Model 5:** $z_{dec} = 250$ (Thomas et al. 2008)

Mean Gas Temperature in the Simplified Models

Comparison with respect to RECFAST



First Order Perturbation in Gas Temperature

- Basic Framework

$$\Delta_b(x, z) = \frac{\rho_b(x, z) - \bar{\rho}_b(z)}{\bar{\rho}_b(z)}$$

$$\Delta_g(x, z) = \frac{T_g(x, z) - \bar{T}_g(z)}{\bar{T}_g(z)}$$

$$\Delta_b \propto a(t)$$

$$\Delta_g = g(z) \Delta_b$$

First Order Perturbation in Gas Temperature

- Gas Temperature Perturbation equation³

$$\frac{dg}{dz} = \left(\frac{x_e}{1 + f_{He} + x_e} \right) \frac{T_\gamma g}{t_\gamma H_0 \Omega_m^{1/2} T_g} (1+z)^{3/2} + \left(\frac{2}{3} - g \right) \frac{1}{\Delta_b} \frac{d\Delta_b}{dz}$$

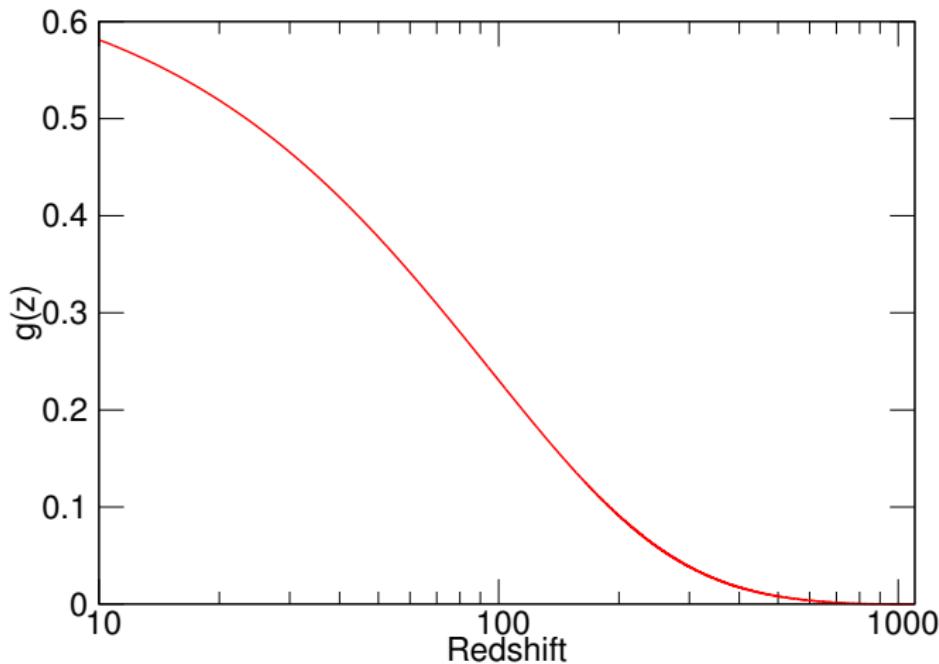
- In the simple models

$$g = 0.0 \text{ for } z > z_{\text{dec}} \text{ and } g = \frac{2}{3} \text{ for } z \leq z_{\text{dec}}$$

³Barkana & Loeb 2005, Bharadwaj & Ali 2004

First Order Perturbation in Gas Temperature

From RECFast

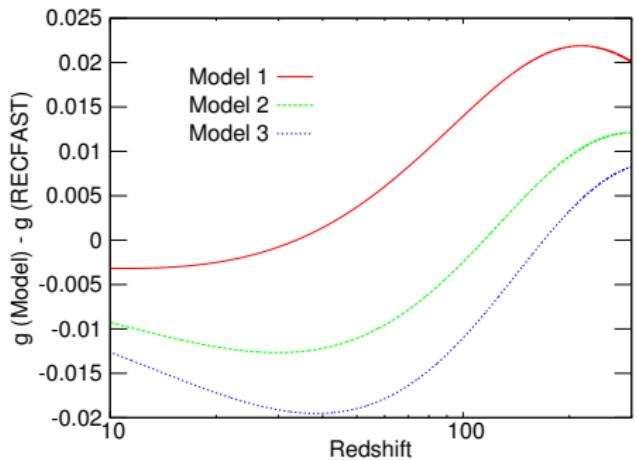


Evolution of $g(z)$ from RECFast

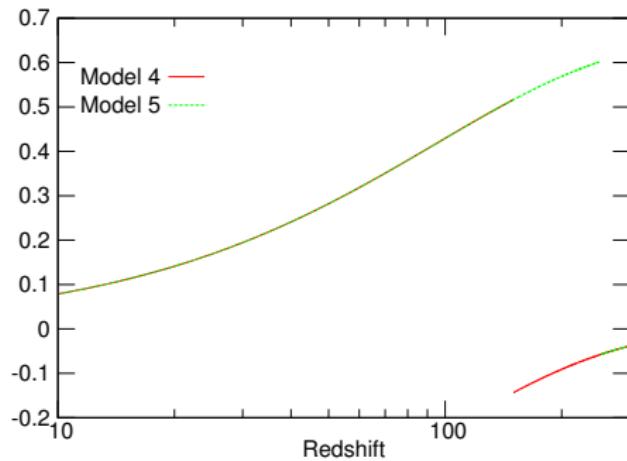
First Order Perturbation in Gas Temperature

In Other Models

Comparison with respect to RECFAST



Fixed x_e models



Other simple models

Evolution of HI Spin Temperature

Theoretical Framework

- Definition of Spin Temperature, T_s

$$\frac{n_1}{n_0} = \frac{g_1}{g_0} e^{\frac{-h\nu_e}{k_B T_s}}$$

n_1, n_0 : number density of neutral hydrogen atoms in triplet and singlet states

$g_1 = 3, g_0 = 1$: Corresponding state degeneracy factors

$\nu_e = 1420\text{MHz}$: rest frame frequency for transition between the two states

Evolution of HI Spin Temperature

Theoretical Framework

- Balancing excitation and de-excitation terms⁴

$$n_1(C_{10} + A_{10} + B_{10}I_{\nu_e}) = n_0(C_{01} + B_{01}I_{\nu_e})$$

C_{01} , C_{10} : collisional excitation and de-excitation rates of the hyperfine levels

A_{10} , B_{01} and B_{10} : Einstein coefficients

I_{ν_e} : specific intensity of the CMB at ν_e

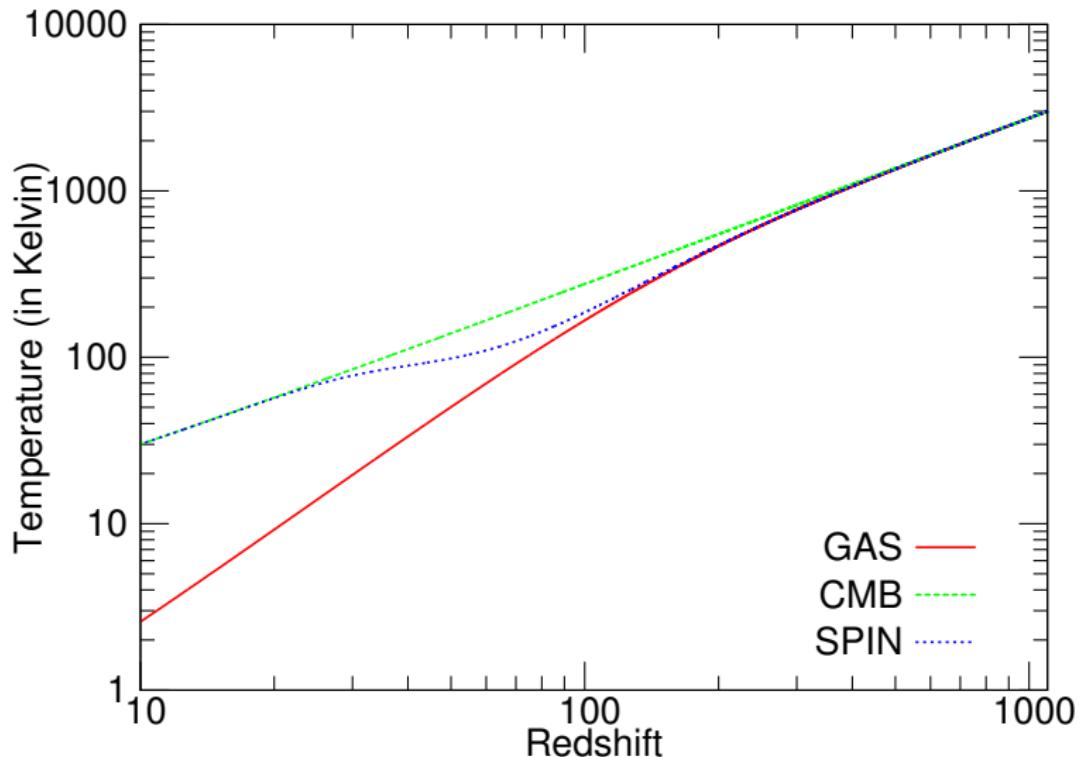
- Spin Temperature Evolution Equation in Equilibrium

$$T_s^{-1} = \frac{T_\gamma^{-1} + x_c T_g^{-1}}{1 + x_c}$$

$$x_c = \frac{C_{10} h \nu_e}{k_B A_{10} T_\gamma},$$

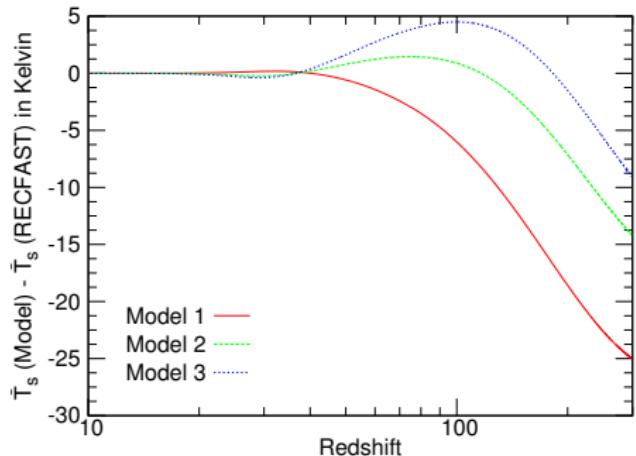
⁴Furlanetto et al. 2006

Mean Spin Temperature from RECFAST

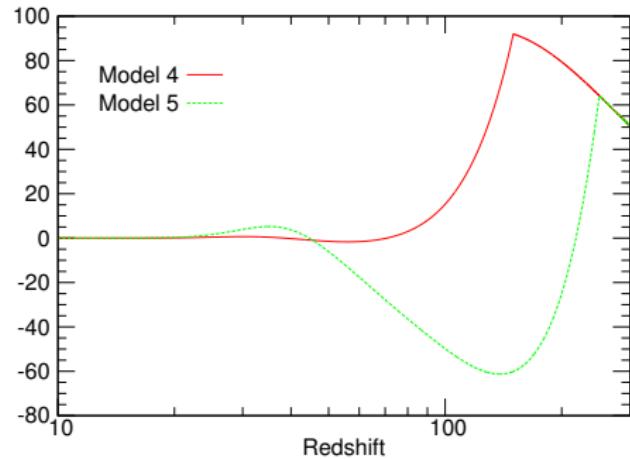


Mean Spin Temperature in Other Models

Comparison with respect to RECFAST



Fixed x_e models



Other simple models

First Order Perturbation in HI Spin Temperature

- Basic Framework

$$\Delta_s(x, z) = \frac{T_s(x, z) - \bar{T}_s(z)}{\bar{T}_s(z)}$$
$$\Delta_s = s(z)\Delta_b$$

First Order Perturbation in HI Spin Temperature

- Spin Temperature Perturbation equation

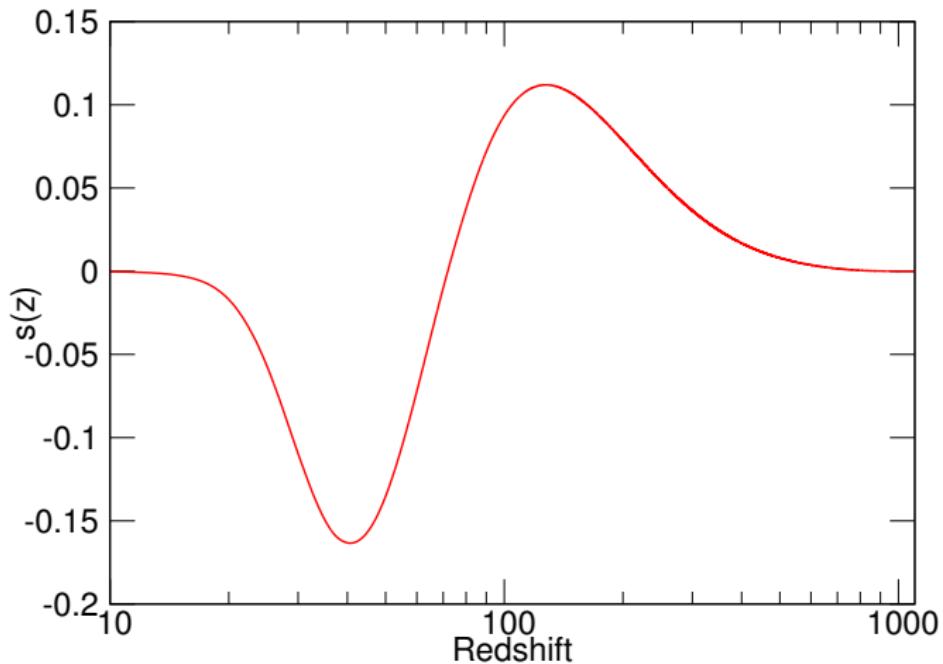
$$s = \left(\frac{x_c}{1+x_c} \right) \left[\left(\frac{d \ln K}{d \ln T_g} g + 1 \right) \left(1 - \frac{T_s}{T_g} \right) + \frac{T_s}{T_g} g \right]$$

- In the simple models

$s = 0.0$ for $z > z_{dec}$ and the above equation holds for $z \leq z_{dec}$

First Order Perturbation in HI Spin Temperature

From RECFEST

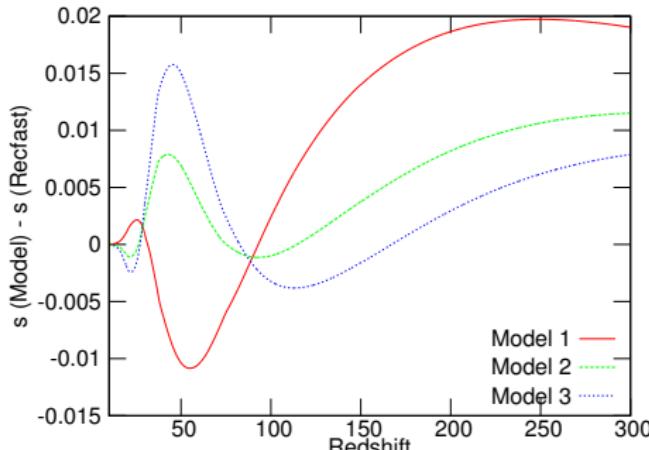


Evolution of $s(z)$ from RECFEST

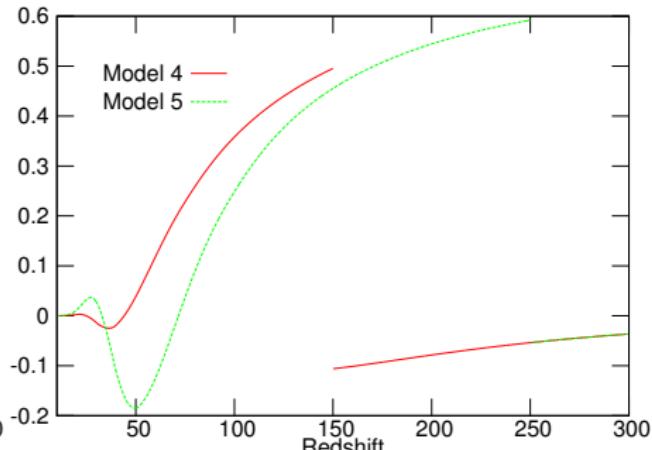
First Order Perturbation in HI Spin Temperature

In other Models

Comparison with respect to RECFAST



Fixed x_e models



Other simple models

Brightness Temperature of the HI 21 cm line

$$T_b(z) = \frac{(T_s - T_\gamma)}{1 + z} \tau(z)$$

τ is the optical depth of the HI 21 cm absorption given as

$$\tau(z) = \frac{3\bar{n}_{HI}hc^3A_{10}}{32\pi k_B T_s \nu_e^2 H(z)} \left(1 + \Delta_H + \frac{1}{H(z)a(z)} \frac{\partial v}{\partial r} \right)$$

taking into account both Hydrogen density perturbation Δ_H and peculiar velocity v . r is the comoving distance to HI.⁵

⁵Bharadwaj & Ali 2004

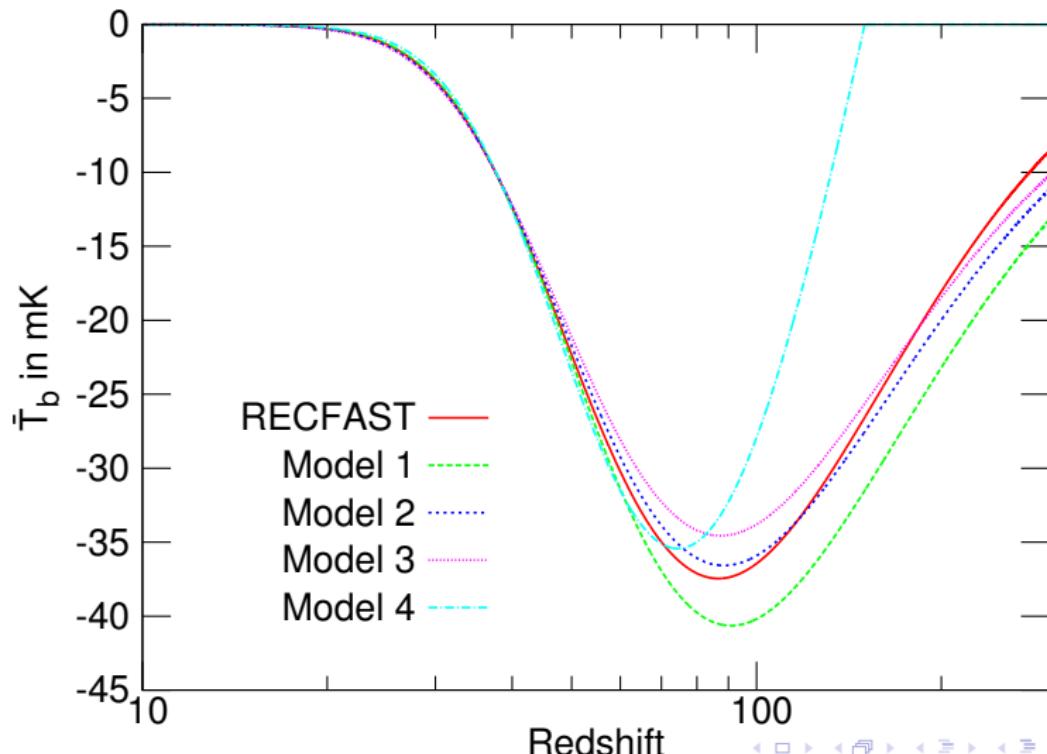
Brightness Temperature of the HI 21 cm line

Average Brightness Temperature

$$\bar{T}_b(z) = \bar{T} \left(1 - \frac{T_\gamma}{\bar{T}_s} \right)$$
$$\bar{T} = \frac{3n_{HI}hc^3A_{10}}{32\pi k_B\nu_e^2 H(z)} \frac{1}{1+z}$$

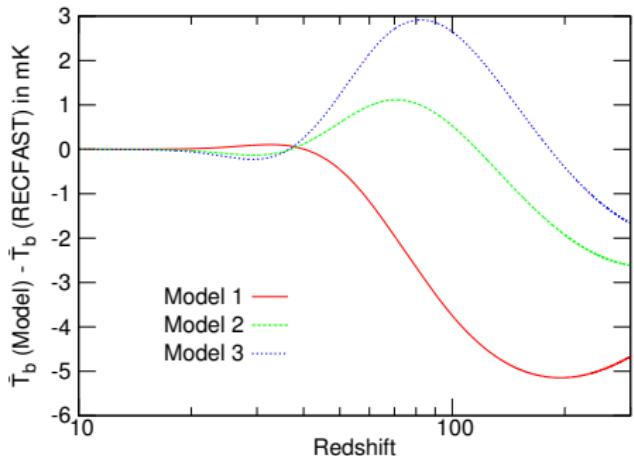
Average Brightness Temperature

Comparison between RECFEST and all other Models

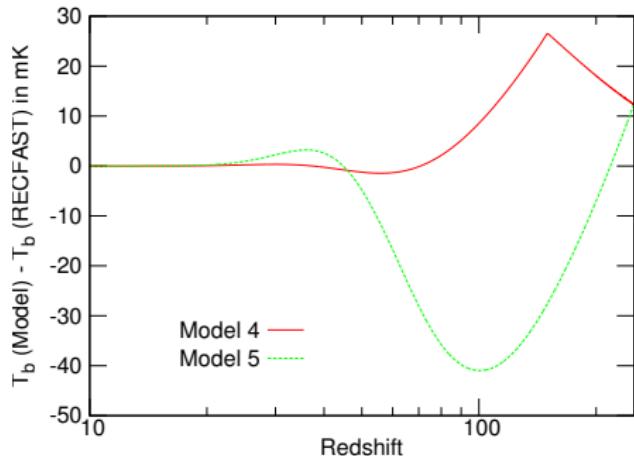


Average Brightness Temperature

Differences with respect to RECFast



In fixed x_e models



In other simple models

Fluctuations in the Brightness Temperature

3D Power Spectrum of the HI 21 cm Signal

$$\delta T_b(z, \hat{n}) = \bar{T} \int \frac{d^3 k}{2\pi^3} e^{-ikr\mu} \Delta(k, z) \left[\left(1 - \frac{T_\gamma}{T_s}\right) (1 + \mu^2) + \frac{T_\gamma}{T_s} s \right]$$

$\Delta(k, z)$ is the Fourier transform of $\Delta_H(x, z)$ and μ is the cosine of the angle between the comoving wave vector k and the line of sight \hat{n} .

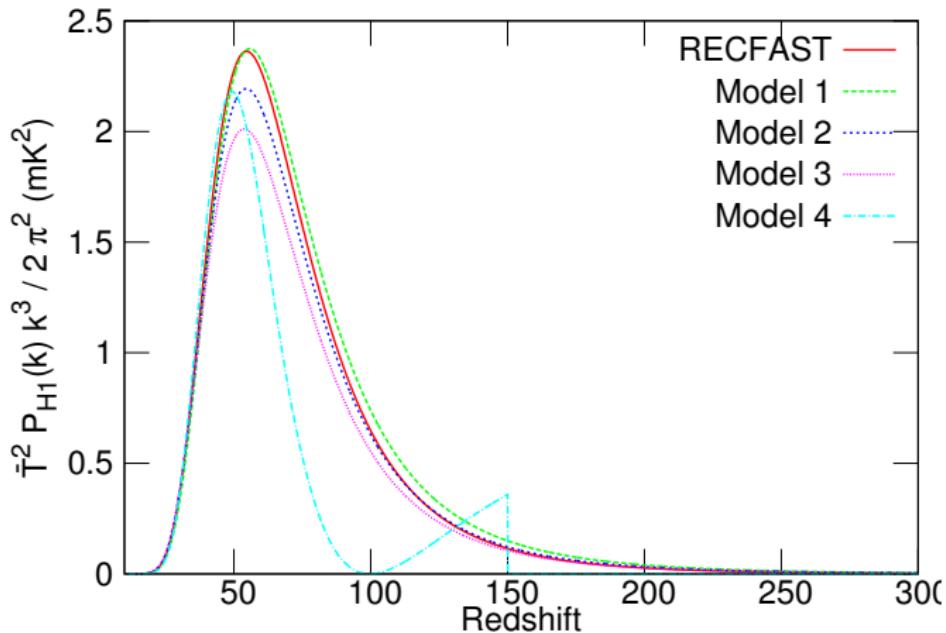
$$P_{HI}(k, z) = \left[\left(1 - \frac{T_\gamma}{T_s}\right) (1 + \mu^2) + \frac{T_\gamma}{T_s} s \right]^2 P(k, z)$$

$P(k, z)$ is the Dark Matter Power Spectrum

Fluctuations in the Brightness Temperature

3D Power Spectrum of the HI 21 cm Signal

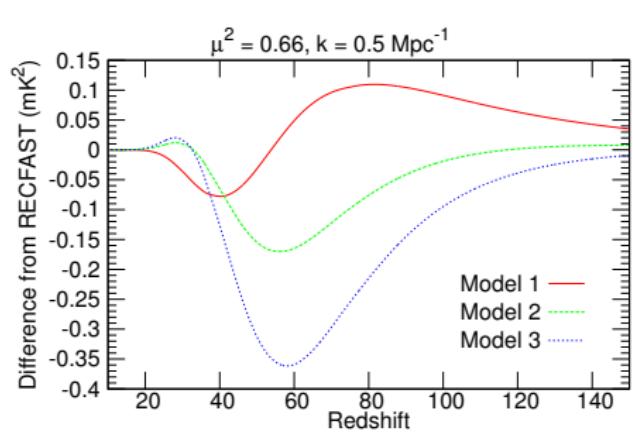
Comparison between RECFast and all other Models



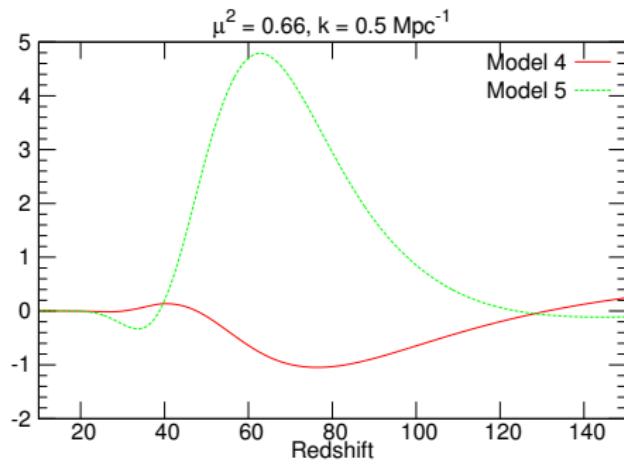
Fluctuations in the Brightness Temperature

3D Power Spectrum of the HI 21 cm Signal

Differences with respect to RECFAST



In fixed x_e models



In other simple models

Conclusions

- The prediction for the 3D power spectrum in Bharadwaj & Ali (2004) is consistent with RECFAST to within $\pm 5\%$ upto $z = 70$. However, it sharply diverges thereafter and at $z = 100$ and $z = 150$ differs by 15% and 30% respectively.
- Fixing x_e at $z = 200$ leads to around -15% difference at $z = 50$ to 100 and -8% at $z = 150$
- Fixing x_e at $z = 150$ leads to a difference of -7% to 7% from $z = 50$ to $z = 150$
- In Ghara et al. (2015) model, the percentage change is below 5% upto $z = 50$ and steadily increases thereafter, being 30% at $z = 60$ and 100% at $z = 100$
- In Thomas et al. (2008) model, the percentage change is 130% at $z = 50$ going down to -100% at $z = 150$