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Error Analysis in Experiments 
 

‘The aim of science is not to open a door of infinite wisdom, but to set a limit to 

infinite error’- by Galileo in „The Life of Galileo‟ written by „Bertolt Brecht‟ 
 

 

Why Error Analysis? 

 Physics is a quantitative science. This means that in the Physics laboratory we 

are concerned with making measurements which are both accurate and precise. In 

order to be able to make a meaningful interpretation of our results we have to have an 

idea of how reliable those results are. This is where the notion of experimental error 

comes into the picture. It is an honest expression of the uncertainty of the 

measurements, not an indication of mistake.  

  

Types of Error 
 

An uncertainty is a range, estimated by the experimenter, that is likely to contain the 

true value of whatever is being measured.  For example, if you measure a distance 

with a meter stick you usually assign an uncertainty of ± 1mm to the result.  

Uncertainties can be expressed in absolute terms or relative terms, just as errors can.  

People often say “error” when they mean uncertainty, just because it doesn‟t take as 

long, but what is meant can usually be figured out from the context.   

 

A systematic error results reproducibly from faulty calibration of equipment or from 

bias on part of the observer.  These errors must be estimated from an analysis of the 

experimental conditions and techniques.  In some cases corrections can be made to the 

data to compensate for systematic errors where the type and extent of error is known. 

In other cases, the uncertainties resulting from these errors must be estimated and 

combined with uncertainties from statistical fluctuations.   

 

Random error  is the fluctuations in observations which yield results that differ from 

experiment to experiment and that requires repeated experimentation to yield precise 

results. The problem of reducing random errors is essentially one of improving the 

experiment and refining the techniques as well as simply repeating the experiment.  If 

the random errors result from instrumental uncertainties, they can be reduced by using 

more reliable and more precise measuring instruments.  If the random errors result 

from statistical fluctuations of counting finite number of events, they can be reduced 

by counting more events. 

 

Probable error is the magnitude of error which is estimated to have been made in 

determination of results.  This does not mean that we expect our results to be wrong 

by this amount.  It means, instead, that if our answer is wrong, it probably won‟t be 

wrong by more than the probable error. The probable error has another significance.  

If we repeat the experiment, making the measurements in as nearly identical a manner 

as possible but not necessarily obtaining the identical observations, we expect the new 

result to have the same probable error as the first.  Since we expect both 

determinations to be approximately within the probable error of the “true” value, they 

will also probably be within some fraction of the probable error of each other.  Thus, 
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the probable error for the result is also a measure of the probable discrepancy between 

two results obtained under identical conditions. 

 

The accuracy of a measurement is a way of talking about the total error in your final 

result.  An accurate measurement is very close to the true value.  Just because a 

measurement is accurate doesn‟t mean it‟s precise; an accurate value with a wide 

possible range isn‟t very useful. 

 

The precision of a measurement is the total amount of random error present.  A very 

precise measurement has small random errors, but just because a measurement is 

precise doesn‟t mean that it‟s accurate (see above); undiscovered systematic errors 

might skew your results drastically. 

 

The accuracy of an experiment is generally dependant on how well we can 

control or compensate for systematic errors.  The precision of an experiment is 

dependant on how well we can overcome or analyze random errors.   

 

Significant Figures and Round off 
 

The precision of an experimental result is implied by the way in which the result is 

written, though it should generally be quoted specifically as well.  To indicate the 

precision, we write a number with as many digits as are significant.  The number of 

significant figures in a result is defined as follows : 

1. The leftmost nonzero digit is the most significant digit. 

2. If there is no decimal point, the rightmost nonzero digit is the least significant 

digit. 

3. If  there is a decimal point, the rightmost digit is the least significant digit, even 

if it is a 0. 

4. All digits between the least and most significant digits are counted as significant 

digits. 

For example, the following numbers each have four significant digits: 1,234; 123,400; 

123.4; 1,001, 1,000., 10.10, 0.0001010, 100.0.  If there is no decimal point, there are 

ambiguities when the rightmost digit is a 0.  For example, the number 1,010 is 

considered to have only three significant digits even though the last digit might be 

physically significant.  To avoid this ambiguity, it is better to supply decimal points or 

write such numbers in exponent form as an argument in decimal notation times the 

appropriate power of 10.  Thus, our example of 1,010 would be written as 1,010. or 

1.010 x 10
3
 if all four digits are significant. 

 When quoting results of an experiment, the number of significant figures 

given should be approximately one more than that dictated by the experimental 

precision.  The reason for including the extra digit is that in computation one 

significant figure is sometimes lost.  Errors introduced by insufficient precision in 

calculations are classified as illegitimate error.  If an extra digit is specified for all 

numbers used on the computation, the original precision will be retained to a greater 

extent.  For example, in the experiment if the absolute precision of the result is 10 

mm, the third figure is known with an uncertainty of  ±1 and the fourth figure is not 

really known at all.  We would be barely justified in specifying four figures for 

computation.  If the precision is 2mm, the third digit is known quite well and the 

fourth figure is known approximately.  We are justified in quoting four figures, but 
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probably not justified in quoting five figures since we cannot even have much 

confidence in the value of the fourth figure. 

 When insignificant digits are dropped from a number, the last digit retained 

should be rounded off for the best accuracy.  To round off a number to a smaller 

number of significant digits than are specified originally, truncate the number to the 

desired number of significant digits and treat the excess digits as a decimal fraction.  

Then 

1. If the fraction is greater than ½ , increment the least significant digit. 

2. If the fraction is less than ½, do not increment. 

3. If the fraction equals ½, increment the least significant digit only if it is odd. 

In this manner, the value of the final result is always within half the least significant 

digit of the original number.  The reason for rule (3) is that in many cases the fraction 

equals either 0 or ½  and consistently incrementing the least significant digit for a 

fraction of ½ would lead to a systematic error.  For example, 1.235 and 1.245 both 

become 1.24 when rounded off to three significant figures, but 1.2451 becomes 1.25.   

 

Statistical Error Analysis 
 

A. Gaussian Distribution  

 

 As you‟ve no doubt seen in lab, every measurement is subject to a certain 

amount of random error.  The roots of this problem lie deep in quantum mechanics, 

on Heisenberg‟s uncertainty principle.   

 

 Random errors can arise from minute vibrations in the apparatus, quantum 

uncertainties in the system being studied, and many other small but uncontrolled 

effects.  Fortunately, almost all the random errors you encounter can be characterized 

by a Gaussian distribution, also known as a bell curve [Fig. 1].  This simple 

mathematical form describes the probability of encountering any given error. 

 

    
 

 The Gaussian distribution has two free parameters: the mean and the standard 

deviation.  The probability of finding a measurement in the range [x, x+dx] is equal to 

the area under the curve in that range.  The curve is normalized to have a total area of 

1, which is why its amplitude is not also a free parameter.  Notice also that the 
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distribution is symmetric; an error is equally likely to occur in either direction.  The 

equation which describes this curve: 
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 The standard deviation () describes the width of the bell; a higher standard 

deviation means that you‟re more likely to find large errors.  The mean (xm) lies on the 

axis of symmetry of the bell.  These two parameters completely determine the shape 

of the curve and are used to describe the results of your measurements.  Another 

common way of describing the width of the bell is by using the “full width at half 

maximum”, or FWHM, which is equal to 2.36  and is easier to figure out from a 

plot.  By integrating all or part of the Gaussian curve, we can make precise statements 

about how probable it is that our results are correct.  

 

Cumulative Frequency distribution 

  

 

 

 

 

 

 

 

 

 

 

 

In Biology, for statistical analysis, one more commonly use cumulative distribution 

function, which gives the probability that a variate assume a value  ≤ x, and is then the 

integral of the Gaussian function integrating from minus infinity to x.  

Cumulative distribution function is given by 
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Erf x is the error function. 

The cumulative distribution is basically the answer to the question, “What is the 

probability that an instantaneous  value of variate is less than x”. Basically the point 

of inflection of the cumulative distribution corresponds to maximum probability.  

 

B Mean value  

 

Suppose an experiment were repeated many, say N, times to get, 

    x1,x2,…..xi,….,xn, 

N measurements of the same quantity, x.  If the errors were random then the errors in 

these results would differ in sign and magnitude. So if the average or mean value of 

our measurements were calculated, 

x 

D(x) 
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Some of the random variations could be expected to cancel out with others in the sum.  

This is the best that can be done to deal with random errors: repeat the measurement 

many times, varying as many “irrelevant” parameters as possible and use the average 

as the best estimate of the true value of x. (It should be pointed out that this estimate 

for a given N will differ from the limit as N the true mean value; though, of 

course, for larger N it will be closer to the limit).   

Doing this should give a result with less error than any of the individual 

measurements.  But it is obviously expensive, time consuming and tedious.  So, 

eventually one must compromise and decide that the job is done.  Nevertheless, 

repeating the experiment is the only way to gain confidence in and knowledge of its 

accuracy.  In the process an estimate of the deviation of the measurements from the 

mean value can be obtained. 

 

C Standard deviation  

  

 In terms of the mean, the standard deviation of any distribution is, 
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D Rules of error propagation  

 

 Frequently, the result of an experiment will not be measured directly.  Rather, 

it will be calculated from several measured physical quantities (each of which has a 

mean value of an error).  What is the resulting error in the final result of such an 

experiment? 

 

For instance, what is the error in Z=A+B where A and B are two measured 

quantities with errors A and B respectively? 

A first thought might be that the error in Z would be just the sum of the errors in A 

and B.  After all, 

 

         ΔBΔABAΔBBΔAA   

and 

         ΔBΔABAΔBBΔAA   
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But this assumes that, when combined, the errors in A and B have the same sign and 

maximum magnitude; that is that they always combine in the worst possible way.  

This could only happen if the errors in the two variables were perfectly correlated, 

(i.e.. if the two variables were not really independent). 

 

If the variables are independent then sometimes the error in one variable will happen 

to cancel out some of the error in the other and so, on the average, the error in Z will 

be less than the sum of the errors in its parts.  A reasonable way to try to take this into 

account is to treat the perturbations in Z produced by perturbations in its parts as if 

they were “perpendicular” and added according to the Pythagorean theorem, 

 

      22
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That is, if A = (100 ± 3) and B = (6 ± 4) then  Z = (106 ± 5)  since 22 435  . 

 

This idea can be used to derive a general rule.  Suppose there are two measurements, 

A and B, and the final result is Z = F(A,B) for some function F.  If A is perturbed by 

A then Z will be perturbed by 
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Similarly the perturbation in Z due to a perturbation in B is, 
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Combining these by the Pythagorean theorem yields 
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In the example of Z = A+B considered above, 
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so this gives the same result as before.  Similarly if Z = A-B  then, 
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which also gives the same result.  Errors combine in the same way for both addition 

and subtraction.  

 

However, if Z = AB  then, 
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or the fractional error in Z is the square root of the sum of the squares of the fractional 

errors in its parts.  (You should be able to verify that the result is the same for division 

as it is for multiplication.)  For example, 
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It should be noted that since the above applies only when the two measured 

quantities are independent of each other it does not apply when, for example, one 

physical quantity is measured and what is required is its square.  If Z = A
2
 then the 

perturbation in Z due to a perturbation in A is, 
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Thus, in this case, 
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 as would be obtained by misapplying the rule for independent 

variables.  For example, 
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If a variable Z depends on (one or) two variables (A and B) which have 

independent errors (A and B) then the rule for calculating the error in Z is tabulated 

in following table for a variety of simple relationships.   

 
             Relation between Z 

                    and (A, B) 
Relation between errors Z    

   and  (A, B) 
1          Z = A + B      222

BA Z  

2         Z = A - B      222
BA Z  
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        Z = An 
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        Z = ln A 
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         Z = eA  
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E Removing systematic errors 

 

To hunt  for systematic errors one should go through this mental process, 

while designing an experiment : 

1. What physical quantities (including environmental factors) is the 

measurement most sensitive to? 

2. Are there any other sources of error in the quantity that is being 

measured? 

3. If so how we isolate the experiment from these effects? 

4. If we can not get rid of the systematic error, can we measure it and 

account for it later? 

 

Of course, there always remains the possibility that a systematic error is 

present which we might not think of. To account for this one needs to calibrate  the 

instruments used and if possible, the experiment itself. Calibrating means that we use 

our instrument to measure some known quantities and check whether the measured 

answer tallies with known results. One should be cautious when using this method to 

correct results outside the domain which we have calibrated. There is no way to know 

whether other effects would become important in the new region. 

 

 If we do not have any good way of producing known values, and think 

of a systematic error which we are not able to remove from the experiment, then the 

only way to correct it is by using Physics. We make and educated guess as to the 

exact nature of the error, and then use an established theory to figure out what impact 

it will have on the experiment. 

 

F The least square fit to a straight line 

 

 (vide General Instructions) 
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Questions 
 

1. Consider a set of plates produced by the same mechanism, which look squarish but 

might be rectangular because of minute differences in the lengths of the sides. We 

would like to measure the sides of these plates and decide about the squareness. 

There are two ways to decide about squareness--(i) find the values of (length)-

(breadth) (ii) find the values of (length)/(breadth). Which do you think is a better 

formula to use to accurately determine the `squareness'? Use error analysis to answer 

this question. 

 

2. Suppose, in an experiment, you are measuring two lengths – one of the order of 1.0 

m and another of the order of 0.1 m. Both are being measured by an instrument of 

least count 0.01 m? Which length is being measured more inaccurately (i.e. with 

larger error)? (Note that you are using the same instrument to measure both the 

lengths). 

 

3. Determine the number of significant digits of each of these numbers : (a) .0002053 

(b) 1.3456 (c) .010234 (d) 1001.23 (e) 100.00 

 

4. If you are given a formula y=f(x1,x2,x3) say, a way to find the error is to take the 

logarithm and evaluate (y)/y. Remove all minus signs in the resulting expression 

involving (x1)/x1 etc., so that you get the maximum error. Try this method out for 

the following formulae (a) y= ax
2
z

3
 (b) y= ax + bz

2
 (a and b are constants here).    

 

5. One of your friends measures a quantity five times and writes the data as 100.01, 

100.002, 100.0, 100.01, 100.00. He shows it to the instructor and gets a thorough 

lecture on `writing data properly'. What do you think the instructor said to your friend 

or where did your careless friend mess up?       

 

Reference 
 

1. An Introduction to Error Analysis by J.R. Taylor, University Science 

Book, 1962 

2. Statistical Treatment of Experimental Data by H.D. Young, McGraw-

Hill 1962. 

3. Data Reduction and Error Analysis for the Physical Sciences by P.R. 

Bevington, McGraw-Hill 1969     519.8 BEV/D 

 

 


